

Welcome to Remix’s documentation!

Remix IDE is an open source web and desktop application. It fosters a fast development cycle and has a rich set of plugins with intuitive GUIs. Remix is used for the entire journey of contract development as well as being a playground for learning and teaching Ethereum.

Remix IDE is part of the Remix Project which is a platform for development tools that use a plugin architecture. It encompasses sub-projects including Remix Plugin Engine, Remix Libs, and of course Remix-IDE.

Remix IDE is a powerful open source tool that helps you write Solidity contracts straight from the browser.

It is written in JavaScript and supports both usage in the browser, in the browser but run locally and in a desktop version.

Remix IDE has modules for testing, debugging and deploying of smart contracts and much more.

Remix-IDE is available
at remix.ethereum.org [http://remix.ethereum.org] and more information can be found in these
docs. Our IDE tool is available at our GitHub repository [https://github.com/ethereum/remix-project].

This set of documents covers instructions on how to use Remix. Additional tutorials are found in our Medium blog and in our tutorial tool, LearnEth [https://remix-alpha.ethereum.org/?#activate=solidity,solidityUnitTesting,LearnEth&call=LearnEth//startTutorial//ethereum/remix-workshops//master//solidityintroduction&deactivate=home&minimizeterminal=true-] located inside of Remix IDE.

Useful links:

	Solidity documentation [https://solidity.readthedocs.io]

	Remix alpha [http://remix-alpha.ethereum.org] - The version where we test new Remix release (not stable!).

	Remix Desktop [https://github.com/ethereum/remix-desktop/releases] - Remix Desktop’s release page.

	Remix on Github [https://github.com/ethereum/remix-project]

	Remix on Medium [https://medium.com/remix-ide]

	Remix on Twitter [https://twitter.com/EthereumRemix]

	Our Gitter support channel [https://gitter.im/ethereum/remix]

	Ethereum.org’s Developer resources [https://ethereum.org/en/developers/]

New Layout Intro

	Remix-IDE Layout
	The new structure

	Icon Panel at Page Load

	Homepage

	Plugin Manager

	Themes

Tour of default modules

	File Explorers
	Create new File

	Create a folder

	Publish to Gist

	Upload to Browser Storage

	Right Click on a File

	Right Click on a Folder

	Right Click on a Script

	Plugin Manager
	Manage permissions

	View permissions

	Plugin Devs: Load a local plugin

	Settings

	Solidity Editor

	Terminal

Tour of typical solidity modules

	Compiler (Solidity)
	Solidity versions & Remix functionality

	Select an Ethereum fork

	Auto Compile

	Compilation Details and Publishing

	Compilation Errors and Warning

	Custom Solidity Compilers

	Deploy & Run
	Environment

	More about Web3 Provider

	Account:

	Gas Limit:

	Value:

	Initiate Instance

	Pending Instances

	Using the ABI

	Using the Recorder

	Run & Deploy (part 2)
	Deployed contracts

	Inputting parameters

	Low level interactions

	Debugger
	Use generated sources

	The Debugger’s Navigation

	The Debugger’s Panels

	Breakpoints

	Additional Info

	Solidity Static Analysis
	How to use

	Run

	Analysis Modules

	Remix-analyzer

Solidity Unit Testing

	Unit Testing Plugin
	Test directory

	Generate

	Write Tests

	Run

	Stop

	Customization

	Points to remember

	Command Line Interface
	remix-tests

	Get started

	How to use

	Example

	Custom compiler context

	As a CI solution

	Remix Assert Library
	Assert

	Testing by Example
	1. Simple example

	2. Testing a method involving msg.sender

	3. Testing method execution

	4. Testing a method involving msg.value

Using Remix

	Build Artifact
	Library Deployment with filename.json

	Creating and Deploying a Contract
	Selecting the VM mode

	Sample contract

	Deploying an instance

	Interacting with an instance

	Debugging Transactions
	Initiate Debugging from the transaction log in the Terminal

	Initiate Debugging from the Debugger

	Using the debugger

	Importing Source Files in Solidity
	Importing a file from the browser’s local storage

	Importing a file from your computer’s filesystem

	Importing from GitHub

	Importing from Swarm

	Importing from IPFS

	Importing from the console

	Remix Commands
	Here’s the list of commands

	Running JS Scripts in Remix
	Why run JavaScript Scripts in Remix?

	Setup

	An Example Script

	Frequently Asked Scripts

	Remixd: Access your Local Filesystem
	Remixd Installation

	Update to the latest Remixd

	remixd Command

	Warning!

	After the command is running, activate the remixd plugin.

	FAQ
	Solidity compiler

	Deploy & Run

	General

	Analytics

Miscellaneous

	Remix URLs & Links with Parameters
	Embedding & Linking to Remix

	Passing commands to a plugin via a url param

	Remix Github Tutorials

	Code Contribution Guide

	Community Support

Remix-IDE Layout

The new structure

[image: _images/a-layout1c.png]

	Icon Panel - click to change which plugin appears in the Side Panel

	Side Panel - Most but not all plugins will have their GUI here.

	Main Panel - In the old layout this was just for editing files. In the tabs can be plugins or files for the IDE to compile.

	Terminal - where you will see the results of your interactions with the GUI’s. Also you can run scripts here.

Icon Panel at Page Load

When you load remix - the icon panel show these icons by default.

[image: _images/a-icons-at-load.png]

Everything in remix is now a plugin… so the Plugin Manager is very important.
In the old layout, each basic task in remix was separated into the tabs. Now these tabs are plugins.

But to activate a half a dozen plugins - (or however many you are using) each time the page load is tedious. So learn about the Environments.

Homepage

[image: _images/a-hometab.png]

The homepage is located in a tab in the Main Panel.

You can also get there by clicking the remix logo at the top of the icon panel.

Environments

Clicking on one of the environment buttons loads up a collection of plugins. We currently have a Solidity Button and a Vyper button. In the future you will be able to save your own environment.

To see all the plugins go to the plugin manager - by selecting the plug in the icon panel.
[image: _images/a-plug.png]

The environment buttons are time & sanity savers - so you don’t need to go to the plugin manager to get started everytime you load the page.

Plugin Manager

In order to make Remix flexible for integrating changes into its functionality and for integrating remix into other projects (your’s for example), we’ve now made everything a plugin. This means that you only load the functionality you need. It also means that you need a place to turn off and on plugins - as your needs change. This all happens in the plug manager.

The Plugin Manager is also the place you go when you are creating your own plugin and you want to load your local plugin into Remix. In that case you’d click on the “Connect to a Local Plugin” link at the top of the Plugin Manager panel.

Themes

So you want to work on Remix with a dark theme or a gray theme or just a different theme that the one you are currently looking at? Go to the settings tab and at the bottom is a choice of lots of bootstrap based themes.

[image: _images/a-themes.png]

File Explorers

To get to the File Explorers module - click the file explorers icon.

[image: _images/a-file-explorer1.png]

By default Remix IDE ONLY stores files in your browser’s local storage. It is possible to go beyond this default behavior - see the Important Note below.

The files explorer’s browser folder has a sample project in it. The files are stored in your browser’s browser storage.

If you open Remix IDE and you do not see the sample project (like in the image above), they will appear when all the files in the File Explorer are erased or when the cache is cleared.

Important Note: Clearing the browser storage will permanently delete all the
solidity files stored there. This is an inherent limitation of a browser-based IDE. However, if you want to store files outside of the browser and on your computer’s filesystem, use RemixD or use the desktop version of Remix-IDE [https://github.com/ethereum/remix-desktop/releases/]. RemixD enables you to have access to a selected folder on your hard drive. Remix Desktop is a version of Remix-IDE in an Electron app. Furthermore you can use the DGIT plugin to save a git repo of your files in IPFS.

You can rename, remove or
add new files to the file explorer.

[image: _images/a-file-explorer-buttons.png]

We will start by reviewing the icons in the image above.

The book icon - A. is the link to the module’s documentation.

The icons to the right of the browser file explorer in the image above only appear for browser storage.

Create new File

Click on the new file icon, an input for a new the file’s name will appear in the Explorer. Once a name is entered, the new empty file will open in the Editor.

[image: _images/a-file-explorer-new-file2.png]

When you click on the new file icon, the new file will be placed in the currently selected folder. If a file and not a folder is selected then the new file will be placed in that file’s folder. And if nothing is selected, then the file will be placed in the root of the browser folder. Or to be brief — just be mindful of what folder it lands in.

Create a folder

The icon marked C. above. Creates a new folder in browser file explorer.

Publish to Gist

The icon marked D. above. Publishes all files from the browser folder to a gist. Only file in the root of browser will be published. Files in subfolders will not be publish to the Gist.
Gist API requires users to be authenticated to be able to publish a gist.

Click this link [https://github.com/settings/tokens] to Github tokens setup and select Generate new token. Then check the Create gists checkbox and generate a new token.

Take the token and paste it in Remix’s Settings module in the Github Access Token section. And then click Save. For the moment, after saving, in order for the token to be registered, you will need to refresh Remix. In an upcoming release, it will not be necessary to do the refresh.

Upload to Browser Storage

Click the icon marked E. to upload a file from your computer’s file system to your browser’s local storage.

Right Click on a File

[image: _images/a-file-ex-rt-click.png]

Right clicking on a file will give you a context menu — offering you the possibility to delete or rename the file.

You can rename or delete a selected file or a folder. You can also create a folder.

Right Click on a Folder

To create a file with the context menu, right click on a folder to get the Create File option. A file will be created inside that folder.

[image: _images/a-file-ex-rt-click-folder.png]

The functionality of the context menu also works with RemixD (which gives you have access to a folder on your hard drive).

Note: When working with RemixD, you need to open and close the localhost folder to refresh the view.

Right Click on a Script

[image: _images/a-file-ex-rt-click-script.png]

Right click on any file with a .js extension will give the run option in the context menu. The run shortcut is equivalent to getting the script file to be the active tab in the editor and then running the command remix.exeCurrent() in the console.

Plugin Manager

[image: _images/a-plugin-man-overview.png]

In Remix IDE you only load the functionality you need. Controlling which plugins are active or inactive happens in the Plugin Manager.

This plugin architecture has made it possible to integrate tools made by the Remix team with tools made by external teams. This architecture also allows Remix or just parts of Remix to be integrated into other projects.

Manage permissions

When plugins need to access other plugins for their operation, a modal will appear to ask you for permission.

[image: _images/a-permission-modal.png]

Often, the same plugin will want to do the same action multiple times. So when granting permission, its helpful to click the Remember this choice box. If you don’t, you might get this modal repeatedly popping up.

View permissions

You can view the permissions that you have granted to plugins by clicking on the Permissions button at the bottom of the Plugin Manager.

[image: _images/a-plugin-man-permissions.png]

A modal will appear like the one below where you can view and erase the granted permission.

[image: _images/a-plugin-manager-modal.png]

Plugin Devs: Load a local plugin

A plugin in development can be loaded into Remix IDE by clicking the “Connect to a Local Plugin” link at the top of the Plugin Manager panel.

[image: _images/a-plugin-man-local.png]

To learn more about how to create your own plugin, go to
the README of remix-plugin repo [https://github.com/ethereum/remix-plugin].

Settings

To get to Settings click the gear a the very bottom of the icon panel.

You can find a link to the homepage (if you closed it) as well as a link to our Gitter Channel and for you aesthetes out there, we now have a rather large list of themes.

[image: _images/a-themes.png]

Another important settings:

	Text wrap: controls if the text in the editor should be wrapped.

	Enable optimization: defines if the compiler should enable optimization during compilation. Enabling this option saves execution gas. It is useful to enable optimization for contracts ready to be deployed in production but could lead to some inconsistencies when debugging such a contract.

Solidity Editor

The Remix editor recompiles the code each time the current file is
changed or another file is selected. It also provides syntax
highlighting mapped to solidity keywords.

[image: _images/a-sol-editor.png]

Here’s the list of some important features:

	It display opened files as tabs.

	Compilation Warning and Error are displayed in the gutter

	Remix saves the current file continuously (5s after the last
changes)

	+/- on the top left corner enable you to increase/decrease the font
size of the editor

Terminal

[image: _images/a-terminal-and-more.png]

Features, available in the terminal:

	It integrates a JavaScript interpreter and the web3 object. It
enables the execution of the JavaScript script which interacts with
the current context. (note that web3 is only available if the
web provider or injected provider mode is selected).

	It displays important actions made while interacting with the Remix
IDE (i.e. sending a new transaction).

	It displays transactions that are mined in the current context. You
can choose to display all transactions or only transactions that
refers to the contracts Remix knows (e.g transaction created from
the Remix IDE).

	It allows searching for the data and clearing the logs from the
terminal.

	You can run scripts by inputting them at the bottom after the >.

Compiler (Solidity)

Clicking the Solidity icon in the icon panel brings you to the Solidity Compiler.

Compiling is triggered when you click the compile button (D. in image below). If you want the file to be compiled each time the file is saved or when another file is selected - check the auto compile checkbox (E. in image below).

Solidity versions & Remix functionality

Since the Solidity version 0.5.7, it is possible to compile Yul files. Please read the (solidity documentation about Yul [https://solidity.readthedocs.io/en/latest/yul.html]) which contain some code examples.
You can use the language dropdown (B. in image below) to switch the language. This dropdown list is only available for versions greater than or equal to 0.5.7.

You can compile (and deploy) contracts with versions of Solidity older than 0.4.12.
However, the older compilers use a legacy AST — which we no longer support. Consequently, some plugins may not work and some functionality - like source highlighting in the Editor may only be partially working.

Select an Ethereum fork

The “fork selection” dropdown list (C. in image below) allows to compile code against a specific ethereum hard fork.
The compiler default corresponds to the default hard fork used by a specific version.

To see the name of the hard fork used in the current compilation, click the “Compilation Details” button(G. in image below) and in the Metadata section will be a sub-section called settings. Open up the settings to see the hard fork’s name.

[image: _images/a-sol-compiler.png]

Auto Compile

If a contract has a lot of dependencies it can take a while to compile - so you use autocompilation at your discretion.

Compilation Details and Publishing

Because a solidity file can include multiple contracts and because contracts can import other contracts, multiple contracts are often compiled. However, only 1 contract’s compilation details can be retrieved at a time.

To select the desired contract, use the Contract select box (F. in the image).

Using the publish button, you can upload your contract to Swarm (only non
abstract contracts can be published) & IPFS.

When publishing contracts that import other contract, the main contract and all of its imported contracts will be published - each to their own address.

Published data contains the abi and the solidity source code.

After a contract is published, a modal will pop up. This modal contains the contract’s address as well as the addreses of the contracts that it imported and the address of the contract’s metadata.

When the “Compilation Details” button is clicked (G. in image), a modal opens displaying detailed information about the current selected contract.

Compilation Errors and Warning

Compilation Errors and Warning are displayed below the contract section.
At each compilation, the static analysis tab builds a report.

It is important to address reported issues even if the compiler doesn’t complain. (see more)

Custom Solidity Compilers

For those writing your own custom solidity compiler, you can import that by clicking the + button (X. in the image) to open a modal where you can input the url of the compiler to be loaded.

Deploy & Run

[image: _images/a-run-icon.png] The Deploy & Run module allows you to send transactions to the current environment.

To use this module, you need to have a contract compiled. So, if there is a contract name in the CONTRACT select box (the select box is under the VALUE input field), you can use this module. If nothing is there or you do not see the contract you want, you need to select a contract in the editor to make it active, go to a compiler module and compile it, and then come back to Deploy & Run.

[image: _images/a-runtab1a.png]

Environment

	JavaScript VM: All the transactions will be executed in
a sandbox blockchain in the browser. This means nothing
will be persisted when you reload the page. The JsVM is its own blockchain and on each reload it will start a new blockchain, the old one will not be saved.

	Injected Provider: Remix will connect to an injected
web3 provider. Metamask is an example of a provider that inject web3.

	Web3 Provider: Remix will connect to a remote node. You will need to provide the URL to the selected provider: geth, parity or any Ethereum client.

More about Web3 Provider

If you are using Geth & https://remix.ethereum.org, please use the following Geth command to allow requests from Remix:

geth –rpc –rpccorsdomain https://remix.ethereum.org

Also see Geth Docs about the rpc server [https://geth.ethereum.org/docs/rpc/server]

To run Remix using https://remix.ethereum.org & a local test node, use this Geth command:

geth –rpc –rpccorsdomain=”https://remix.ethereum.org” –rpcapi web3,eth,debug,personal,net –vmdebug –datadir <path/to/local/folder/for/test/chain> –dev console

If you are using remix-alpha or a local version of remix - replace the url of the –rpccorsdomain with the url of Remix that you are using.

To run Remix Desktop & a local test node, use this Geth command:

geth –rpc –rpccorsdomain=”package://a7df6d3c223593f3550b35e90d7b0b1f.mod” –rpcapi web3,eth,debug,personal,net –vmdebug –datadir <path/to/local/folder/for/test/chain> –dev console

Also see Geth Docs on Dev mode [https://geth.ethereum.org/getting-started/dev-mode]

The Web3 Provider Endpoint for a local node is http://localhost:8545

WARNING: Don’t get lazy. It is a bad idea to use the Geth flag –rpccorsdomain with a wildcard: --rpccorsdomain *

If you put the wildcard *, it means everyone can request the node. Whereas, if you put a URL, it restricts the urls to just that one - e.g. --rpccorsdomain 'https://remix-alpha.ethereum.org'

Only use --rpccorsdomain * when using a test chain AND using only test accounts. For real accounts or on the mainchain specify the url.

Account:

	Account: the list of accounts associated with the current
environment (and their associated balances). On the JsVM, you have a choice of 5 accounts. If using Injected Web3 with MetaMask, you need to change the account in MetaMask.

Gas Limit:

	This sets the maximum amount of gas that will be allowed for all the
transactions created in Remix.

Value:

	This sets the amount of ETH, WEI, GWEI etc that is sent to a contract or a payable function. (Note: payable functions have a red button). The value is always reset to 0 after each transaction execution). The Value field is NOT for gas.

[image: _images/a-Runtab-deploy-atAddress.png]

Initiate Instance

	In the image above, the select box is set to Ballot. This select box will contain the list of compiled contracts.

	Deploy send a transaction that deploys the selected contract. When
the transaction is mined, the newly created instance will be added
(this might take several seconds). Note that if the constructor
has parameters, you need to specify them.

	At Address this is used at access a contract that has already been deployed. It assumes that the given address is an instance of the selected contract. Note: There’s no check at this point, so be careful when using this feature, and be sure you trust the contract at that address.

Pending Instances

Validating a transaction takes several seconds. During this time, the GUI
shows it in a pending mode. When the transaction is mined, the number of
pending transactions is updated and the transaction is added to the log
(see terminal).

Using the ABI

Using Deploy or At Address is a classic use case of Remix. However, it is
possible to interact with a contract by using its ABI. The ABI is
a JSON array which describe its interface.

To interact with a contract using the ABI, create a new file in Remix
with extension *.abi and copy the ABI content to it. Then, in the input
next to At Address, put the Address of the contract you want to
interact with. Click on At Address, a new “connection” with the
contract will popup below.

Using the Recorder

The Recorder is a tool used to save a bunch of transactions in a JSON file and
rerun them later either in the same environment or in another.

Saving to the JSON file (by default its called scenario.json) allows one to easily check the transaction list, tweak input parameters, change linked library, etc…

There are many use cases for the recorder.

For instance:

	After having coded and tested contracts in a constrained
environment (like the JavaScript VM), you could then change the environment and redeploy it to a more realistic environment like a test net with an injected web3 or to a Geth node. By using the generated scenario.json file, you will be using all the same settings that you used in the Javascript VM. And this mean that you won’t need to click the interface 100 times or whatever to get the state that you achieved originally. So the recorder could be a tool to protect your sanity.

You can also change the settings in the scenario.json file to customize the playback.

	Deploying contract does often require more than creating one
transaction and so the recorder will automate this deployment.

	Working in a dev environment often requires to setup the
state in a first place.

[image: _images/a-runtab-recorder.png]

scenario.json

To create this file in the recorder, you first of course need to have run some transactions. In the image above - it has a 0 next to Transactions Recorded. So this isn’t the right moment to save transactions because - well because there aren’t any. Each time you make a transaction, that number will increment. Then when you are ready, click the floppy disk icon and the scenario.json file will be created.

The JSON file below is an example of the scenario.json file.

In it, 3 transactions are executed:

The first corresponds to the deployment of the lib testLib.

The second corresponds to the deployment of the contract test with the
first parameter of the constructor set to 11. That contract depends
on a library. The linkage is done using the property linkReferences.
In that case we use the address of the previously created library :
created{1512830014773}. The number is the id (timestamp) of the
transaction that led to the creation of the library.

The third record corresponds to the call to the function set of the
contract test (the property to is set to: created{1512830015080}) .
Input parameters are 1 and
0xca35b7d915458ef540ade6068dfe2f44e8fa733c

All these transactions are created using the value of the accounts
account{0}.

{
"accounts": {
 "account{0}": "0xca35b7d915458ef540ade6068dfe2f44e8fa733c"
},
"linkReferences": {
 "testLib": "created{1512830014773}"
},
"transactions": [
 {
 "timestamp": 1512830014773,
 "record": {
 "value": "0",
 "parameters": [],
 "abi": "0xbc36789e7a1e281436464229828f817d6612f7b477d66591ff96a9e064bcc98a",
 "contractName": "testLib",
 "bytecode": "60606040523415600e57600080fd5b60968061001c6000396000f300606060405260043610603f576000357c0100900463ffffffff1680636d4ce63c146044575b600080fd5b604a6060565b6040518082815260200191505060405180910390f35b6000610d809050905600a165627a7a7230582022d123b15248b8176151f8d45c2dc132063bcc9bb8d5cd652aea7efae362c8050029",
 "linkReferences": {},
 "type": "constructor",
 "from": "account{0}"
 }
 },
 {
 "timestamp": 1512830015080,
 "record": {
 "value": "100",
 "parameters": [
 11
],
 "abi": "0xc41589e7559804ea4a2080dad19d876a024ccb05117835447d72ce08c1d020ec",
 "contractName": "test",
 "bytecode": "60606040526040516020806102b183398101604052808051906020019091905050806000819055505061027a806100376000396000f300606060405260043610610062576000357c0100900463ffffffff1680632f30c6f61461006757806338cc48311461009e57806362738998146100f357806387cc10e11461011c575b600080fd5b61009c600480803590602001909190803573ff16906020019091905050610145565b005b34156100a957600080fd5b6100b1610191565b604051808273ff1673ff16815260200191505060405180910390f35b34156100fe57600080fd5b6101066101bb565b6040518082815260200191505060405180910390f35b341561012757600080fd5b61012f6101c4565b6040518082815260200191505060405180910390f35b8160008190555080600160006101000a81548173ff021916908373ff1602179055505050565b6000600160009054906101000a900473ff16905090565b60008054905090565b600073__browser/ballot.sol:testLib____________636d4ce63c6000604051602001526040518163ffffffff167c010002815260040160206040518083038186803b151561022e57600080fd5b6102c65a03f4151561023f57600080fd5b505050604051805190509050905600a165627a7a72305820e0b2510bb2890a0334bfe5613d96db3e72442e63b514cdeaee8fc2c6bbd19d3a0029",
 "linkReferences": {
 "browser/ballot.sol": {
 "testLib": [
 {
 "length": 20,
 "start": 511
 }
]
 }
 },
 "name": "",
 "type": "constructor",
 "from": "account{0}"
 }
 },
 {
 "timestamp": 1512830034180,
 "record": {
 "value": "1000000000000000000",
 "parameters": [
 1,
 "0xca35b7d915458ef540ade6068dfe2f44e8fa733c"
],
 "to": "created{1512830015080}",
 "abi": "0xc41589e7559804ea4a2080dad19d876a024ccb05117835447d72ce08c1d020ec",
 "name": "set",
 "type": "function",
 "from": "account{0}"
 }
 }
],
"abis": {
 "0xbc36789e7a1e281436464229828f817d6612f7b477d66591ff96a9e064bcc98a": [
 {
 "constant": true,
 "inputs": [],
 "name": "get",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "payable": false,
 "stateMutability": "view",
 "type": "function"
 }
],
 "0xc41589e7559804ea4a2080dad19d876a024ccb05117835447d72ce08c1d020ec": [
 {
 "constant": true,
 "inputs": [],
 "name": "getInt",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "payable": false,
 "stateMutability": "view",
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "getFromLib",
 "outputs": [
 {
 "name": "",
 "type": "uint256"
 }
],
 "payable": false,
 "stateMutability": "view",
 "type": "function"
 },
 {
 "constant": true,
 "inputs": [],
 "name": "getAddress",
 "outputs": [
 {
 "name": "",
 "type": "address"
 }
],
 "payable": false,
 "stateMutability": "view",
 "type": "function"
 },
 {
 "constant": false,
 "inputs": [
 {
 "name": "_t",
 "type": "uint256"
 },
 {
 "name": "_add",
 "type": "address"
 }
],
 "name": "set",
 "outputs": [],
 "payable": true,
 "stateMutability": "payable",
 "type": "function"
 },
 {
 "inputs": [
 {
 "name": "_r",
 "type": "uint256"
 }
],
 "payable": true,
 "stateMutability": "payable",
 "type": "constructor"
 }
]
}
}

Run & Deploy (part 2)

Deployed contracts

This section in the Run tab contains a list of deployed contracts to interact with through autogenerated UI of the deployed contract (also called udapp).

The deployed contract appears but is in its collapsed form.

[image: _images/a-debug2-udapp1a.png]

Click the sideways caret to open it up.

[image: _images/a-udapp1.png]

You will see the functions in the contract. The functions buttons can have different color buttons.

	Functions that are constant or pure functions in Solidity have a blue buttons. Clicking one of this type does not create a new transaction. So clicking will not cause state changes - it will only return a value stored in the contract - so it won’t cost you anything in gas fees.

	Functions that change the state of the contract AND that do not accept Ether are called non-payable functions and have an orange button. Clicking on them will create a transaction and thus cost gas.

	Functions that have red buttons are payable functions in Solidity. Clicking one of these will create a new transaction and this transaction can accept a value. The value is put in in the Value field which is under the Gas Limit field.

[image: _images/a-jvm-calling-instance.png]

See more information about Solidity
modifiers [http://solidity.readthedocs.io/en/develop/miscellaneous.html?highlight=pure#modifiers] in the Solidity docs.
.

If a function requires input parameters, well.. you gotta put them in.

Inputting parameters

[image: _images/a-udapp-inputs.png]

Inputting parameters in the collapsed view

(Inputting all the parameters in a single input box)

	The input box tells you what type each parameter needs to be.

	Numbers and addresses do not need to be wrapped in double quotes.

	Strings need to be wrapped.

	Parameters are separated by commas.

In the example above the “delegate” function has 3 parameters.

Inputting parameters in the expanded view

Clicking the ‘down’ caret brings you to the Multi-param Manager - where you can input the parameters one at a time. Much less confusing!

[image: _images/a-udapp-multi-param-man.png]

In the expanded view, strings do not need to be wrapped.

Clicking the clipboard icon will encode the inputs and will copy them. Only a valid set of inputs can be encoded.

So if you made a mistake and put a uint8 where an address should have been, clicking the clipboard here will give you an error.

Low level interactions

Low level interactions are used to send funds or calldata or funds & calldata to a contract through the recieve() or fallback() function. Typically, you should only need to implement the fallback function if you are following an upgrade or proxy pattern.

The low level interactions section is below the functions in each deployed contract.

[image: _images/a-udapp1.png]

Please note the following:

	If you are executing a plain Ether transfer to a contract, you need to have the receive() function in your contract. If your contract has been deployed and you want to send it funds, you would input the amount of Ether or Wei etc. (see A in graphic below), and then input NOTHING in the calldata field of Low level interactions (see B in graphic) and click the Transact button (see C in graphic below).

[image: _images/a-receive-fun.png]

	If you are sending calldata to your contract with Ether, then you need to use the fallback() function and have it with the state mutability of payable.

	If you are not sending ether to the contract but are sending call data then you need to use the fallback() function.

	If you break the rules when using the Low level interactions you will be slapped with a warning.

Please see the solidity docs [https://solidity.readthedocs.io/en/latest/contracts.html#receive-ether-function] for more specifics about using the fallback and receive functions.

Passing in a tuple or a struct to a function

To pass a tuple in, you need to put in an array [].

Similarly, to pass in a struct as a parameter of a function, it needs to be put in as an array []. Also note that the line
pragma experimental ABIEncoderV2;
needs to put in at the top of the solidity file.

Example of passing nested struct to a function

Consider a nested struct defined like this:

struct gardenPlot {
 uint slugCount;
 uint wormCount;
 Flower[] theFlowers;
}
struct Flower {
 uint flowerNum;
 string color;
}

If a function has the signature fertilizer(Garden memory gardenPlot) then the correct syntax is:

[1,2,[[3,"Petunia"]]]

To continue on this example, here’s a sample contract:

pragma solidity >=0.4.22 <0.7.0;
pragma experimental ABIEncoderV2;

contract Sunshine {
 struct Garden {
 uint slugCount;
 uint wormCount;
 Flower[] theFlowers;
 }
 struct Flower {
 uint flowerNum;
 string color;
 }

 function picker(Garden memory gardenPlot) public {
 uint a = gardenPlot.slugCount;
 uint b = gardenPlot.wormCount;
 Flower[] memory cFlowers = gardenPlot.theFlowers;
 uint d = gardenPlot.theFlowers[0].flowerNum;
 string memory e = gardenPlot.theFlowers[0].color;
 }
}

After compiling, deploying the contract and opening up the deployed instance, we can then add the following input parameters to the function named fertilizer :

[1,2,[[3,"Black-eyed Susan"],[4,"Pansy"]]]

The function fertilizer accepts a single parameter of the type Garden. The type Garden is a struct. Structs are wrapped in square brackets. Inside Garden is an array that is an array of structs named theFlowers. It gets a set of brackets for the array and another set for the struct. Thus the double square brackets.

Debugger

The Debugger shows the contract’s state while stepping through a transaction.

It can be used on transactions created on Remix or by providing a transaction’s address. The latter assumes that you have the contract’s source code or that you have input the address of a verified contract.

To start a debugging session either:

	Click the debug button in the Terminal when a successful or failed transaction appears there. The Debugger will be activated and will gain the focus in the Side Panel.

	Activate the Debugger in the Plugin Manager and then click the bug in the icon panel. To start the debugging session, input the address of a deployed transaction - while having the source code in the editor and then click the Start debugging button.

The debugger will highlight the relevant code in the Editor. If you want to go back to editing the code without the Debugger’s highlights, then click the Stop Debugging button.

To learn more about how to use this tool go to the Debugging Transactions page.

This page will go over the Debugger’s Use generated sources option, its navigation and its panels.

[image: _images/a-debugger-overview.png]

Use generated sources

This option is available for contracts using Solidity 0.7.2 or greater. See the solidity blog for more details about generated sourcess [https://blog.soliditylang.org/2020/09/28/solidity-0.7.2-release-announcement/#notable-new-features].

Using generated sources will make it easier to audit your contracts. When the option is checked, you can step into those compiler outputs — while debugging.

[image: _images/a-debug-use-gen-sources.png]

These compiler outputs will appear in a separate .yul file in the Remix editor.

The Debugger’s Navigation

Slider & buttons

[image: _images/a-debug-nav.png]

Slider

Moving the slider will highlight the relevant code in the Editor. On the most granular level, it scrolls through a transaction’s opcodes (see the opcode section below). At each opcode, the transaction’s state changes and these changes are reflected in the Debugger’s panels.

Step over back

This button goes to the previous opcode. If the previous step involves a function call, function will not be entered.

Step back

This button steps back to the previous opcode.

Step into

This button advances to the next opcode. If the next line contains a function call, Step into will go into the function.

Step over forward

This button advances to the next opcode. If the next step involves a function call, function will not be entered.

Jump to the previous breakpoint

Breakpoints can be placed in the gutter of the Editor. If the current step in the call has passed a breakpoint, this button will move the slider to the most recently passed breakpoint.

Jump out

When you are in a call and click on this button, the slider will be moved to the end of the call.

Jump to the next breakpoint

If a breakpoint is ahead in the code, this button will advance to that point.

The Debugger’s Panels

Function Stack

The Function stack lists the functions that the transaction is interacting with.

[image: _images/a-debug-func-stack.png]

Solidity Locals

The Solidity Locals are the local variables inside a function.

[image: _images/a-debug-sol-locals.png]

Solidity State

These are the state variables of the contract.

[image: _images/a-debug-sol-state.png]

Opcodes

This panel shows the step number and the opcode that the debugger is currently on.

[image: _images/a-debug-opcodes1.png]

As you drag the slider (which is above the navigation buttons), the focussed step number & opcode changes.

Step details

Step details shows more info about the opcode step.

[image: _images/a-debug-step-detail.png]

Stack

This panel shows the EVM Stack.

[image: _images/a-debugger-panel-stack.png]

For more info about the stack [https://en.wikipedia.org/wiki/Stack_(abstract_data_type)].

Memory

Memory is cleared for each new message call. Memory is linear and can be addressed at byte level. Reads are limited to a width of 256 bits while writes can be either 8 bits or 256 bits wide.

The Memory panel consists of 3 columns. You might need to make Remix’s side panel a bit wider to get the formatting to be correct. (Drag the border between the main panel and the side panel to the right).

The 1st column is the location in memory. The 2nd column is the hex encoded value. The 3rd column is the decoded value. If there is nothing, then the question marks (?) will show - like this:

0x10: 00000000000000000000000000000000 ????????????????

Here is a full example of the Memory panel,

[image: _images/a-debugger-memory.png]

Some address slots have hex encoded values and those values are then decoded. For example, check position 0xa0 and 0x140.

Storage

This is the persistant storage.

[image: _images/a-debug-storage.png]

Call Stack

All computations are performed on a data array called the call stack. It has a maximum size of 1024 elements and contains words of 256 bits.

[image: _images/a-debug-call-stack.png]

Call Data

The call data contains the functions parameters.

[image: _images/a-debug-call-data.png]

Return Value

The refers to the value that the function will return.

[image: _images/a-debug-return.png]

Full Storage Changes

This shows the persistant storage at the end of the function.

[image: _images/a-debug-full-store-change.png]

Breakpoints

Breakpoints can be placed in the gutter of the Editor to pause the debugger.

Additional Info

The debugger’s granular information gives users detailed information about what is happening in a transaction - so not only is the debugger good for debugging, it is also an excellent teaching tool.

To learn about using the debugger, go to Debugging Transactions.

Solidity Static Analysis

Static code analysis is a process to debug the code by examining it and without actually executing the code.

Solidity Static Analysis plugin performs static analysis on Solidity smart contracts once they are compiled. It checks for security vulnerabilities and bad development practices, among other issues. It can be activated from Remix Plugin Manager.

[image: _images/a-static-analysis-from-pm.png]

This plugin comes with Solidity environment of Remix IDE.

How to use

If you select this plugin, you will see a number of modules listed along with checkboxes, one Auto run checkbox and a Run button. Run button will be disabled as there is no compiled contract for now.

[image: _images/a-static-analysis-onload.png]

By default, all modules are selected for analysing a smart contract.

One can select/deselect the modules under which contract should be analyzed and can run the analysis for last compiled contract by clicking on Run.

If Auto run checkbox is checked, analysis will be performed each time a contract is compiled. Uncheck the checkbox if you want to stop this behaviour.

Run

If Auto run checkbox is checked, analysis will be performed on compiling a contract and result will be shown as badge to the plugin icon. This number tells warnings count for the contract (e.g; 12 in attached image below) .

By visiting the plugin UI, the details of the warning can be seen along with the category name for each warning.

Clicking on warning details will highlight the relevant code in the editor.

[image: _images/a-static-analysis.png]

Analysis Modules

Currently, with Remix IDE v0.10.1, there are 21 analysis modules listed under 4 categories. Categories are: Security, Gas & Economy, ERC & Miscellaneous.

Here is the list of modules under each category along with the example code which should be avoided or used very carefully while development:

Category: Security

	Transaction origin: ‘tx.origin’ is used

tx.origin is useful only in very exceptional cases. If you use it for authentication, you usually want to replace it by “msg.sender”, because otherwise any contract you call can act on your behalf.

Example:

require(tx.origin == owner);

	Check effects: Potential reentrancy bugs

Potential Violation of Checks-Effects-Interaction pattern can lead to re-entrancy vulnerability.

Example:

// sending ether first
msg.sender.transfer(amount);

// updating state afterwards
balances[msg.sender] -= amount;

	Inline assembly: Inline assembly used

Use of inline assembly is advised only in rare cases.

Example:

assembly {
 // retrieve the size of the code, this needs assembly
 let size := extcodesize(_addr)
}

	Block timestamp: Semantics maybe unclear

now does not mean current time. now is an alias for block.timestamp. block.timestamp can be influenced by miners to a certain degree, be careful.

Example:

// using now for date comparison
if(startDate > now)
 isStarted = true;

// using block.timestamp
uint c = block.timestamp;

	Low level calls: Semantics maybe unclear

Use of low level call, callcode or delegatecall should be avoided whenever possible. send does not throw an exception when not successful, make sure you deal with the failure case accordingly. Use transfer whenever failure of the ether transfer should rollback the whole transaction.

Example:

x.call('something');
x.send(1 wei);

	Blockhash usage: Semantics maybe unclear

blockhash is used to access the last 256 block hashes. A miner computes the block hash by “summing up” the information in the current block mined. By summing up the information in a clever way a miner can try to influence the outcome of a transaction in the current block.

Example:

bytes32 b = blockhash(100);

	Selfdestruct: Beware of caller contracts

selfdestruct can block calling contracts unexpectedly. Be especially careful if this contract is planned to be used by other contracts (i.e. library contracts, interactions). Selfdestruction of the callee contract can leave callers in an inoperable state.

Example:

selfdestruct(address(0x123abc..));

Category: Gas & Economy

	Gas costs: Too high gas requirement of functions

If the gas requirement of a function is higher than the block gas limit, it cannot be executed. Please avoid loops in your functions or actions that modify large areas of storage

Example:

for (uint8 proposal = 0; proposal < proposals.length; proposal++) {
 if (proposals[proposal].voteCount > winningVoteCount) {
 winningVoteCount = proposals[proposal].voteCount;
 winningProposal = proposal;
 }
}

	This on local calls: Invocation of local functions via ‘this’

Never use this to call functions in the same contract, it only consumes more gas than normal local calls.

Example:

contract test {

 function callb() public {
 address x;
 this.b(x);
 }

 function b(address a) public returns (bool) {}
}

	Delete on dynamic Array: Use require/assert appropriately

The delete operation when applied to a dynamically sized array in Solidity generates code to delete each of the elements contained. If the array is large, this operation can surpass the block gas limit and raise an OOG exception. Also nested dynamically sized objects can produce the same results.

Example:

contract arr {
 uint[] users;
 function resetState() public{
 delete users;
 }
}

	For loop over dynamic array: Iterations depend on dynamic array’s size

Loops that do not have a fixed number of iterations, for example, loops that depend on storage values, have to be used carefully: Due to the block gas limit, transactions can only consume a certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit which can stall the complete contract at a certain point. Additionally, using unbounded loops can incur in a lot of avoidable gas costs. Carefully test how many items at maximum you can pass to such functions to make it successful.

Example:

contract forLoopArr {
 uint[] array;

 function shiftArrItem(uint index) public returns(uint[] memory) {
 for (uint i = index; i < array.length; i++) {
 array[i] = array[i+1];
 }
 return array;
 }
}

	Ether transfer in loop: Transferring Ether in a for/while/do-while loop

Ether payout should not be done in a loop. Due to the block gas limit, transactions can only consume a certain amount of gas. The number of iterations in a loop can grow beyond the block gas limit which can cause the complete contract to be stalled at a certain point. If required, make sure that number of iterations are low and you trust each address involved.

Example:

contract etherTransferInLoop {
 address payable owner;

 function transferInForLoop(uint index) public {
 for (uint i = index; i < 100; i++) {
 owner.transfer(i);
 }
 }

 function transferInWhileLoop(uint index) public {
 uint i = index;
 while (i < 100) {
 owner.transfer(i);
 i++;
 }
 }
}

Category: ERC

	ERC20: ‘decimals’ should be ‘uint8’

ERC20 Contracts decimals function should have uint8 as return type.

Example:

contract EIP20 {

 uint public decimals = 12;
}

Category: Miscellaneous

	Constant/View/Pure functions: Potentially constant/view/pure functions

It warns for the methods which potentially should be constant/view/pure but are not.

Example:

function b(address a) public returns (bool) {
 return true;
}

	Similar variable names: Variable names are too similar

It warns on the usage of similar variable names.

Example:

// Variables have very similar names voter and voters.
function giveRightToVote(address voter) public {
 require(voters[voter].weight == 0);
 voters[voter].weight = 1;
}

	No return: Function with ‘returns’ not returning

It warns for the methods which define a return type but never explicitly return a value.

Example:

function noreturn(string memory _dna) public returns (bool) {
 dna = _dna;
 }

	Guard conditions: Use ‘require’ and ‘assert’ appropriately

Use assert(x) if you never ever want x to be false, not in any circumstance (apart from a bug in your code). Use require(x) if x can be false, due to e.g. invalid input or a failing external component.

Example:

assert(a.balance == 0);

	Result not used: The result of an operation not used

A binary operation yields a value that is not used in the following. This is often caused by confusing assignment (=) and comparison (==).

Example:

c == 5;
or
a + b;

	String Length: Bytes length != String length

Bytes and string length are not the same since strings are assumed to be UTF-8 encoded (according to the ABI defintion) therefore one character is not nessesarily encoded in one byte of data.

Example:

function length(string memory a) public pure returns(uint) {
 bytes memory x = bytes(a);

 return x.length;
}

	Delete from dynamic array: ‘delete’ on an array leaves a gap

Using delete on an array leaves a gap. The length of the array remains the same. If you want to remove the empty position you need to shift items manually and update the length property.

Example:

contract arr {
 uint[] array = [1,2,3];

 function removeAtIndex() public returns (uint[] memory) {
 delete array[1];
 return array;
 }
}

	Data Truncated: Division on int/uint values truncates the result

Division of integer values yields an integer value again. That means e.g. 10 / 100 = 0 instead of 0.1 since the result is an integer again. This does not hold for division of (only) literal values since those yield rational constants.

Example:

function contribute() payable public {
 uint fee = msg.value * uint256(feePercentage / 100);
 fee = msg.value * (p2 / 100);
}

Remix-analyzer

remix-analyzer is the library which works underneath of remix-ide Solidity Static Analysis plugin.

remix-analyzer is an NPM package [https://www.npmjs.com/package/@remix-project/remix-analyzer]. It can be used as a library in a solution supporting node.js. Find more information about this type of usage in the remix-analyzer repository [https://github.com/ethereum/remix-project/tree/master/libs/remix-analyzer#how-to-use]

Unit Testing Plugin

Click the
[image: _images/a-user-testing-icon.png] (double check)
icon from icon bar to move to the Solidity Unit Testing plugin.

If you haven’t used this plugin before and are not seeing double check icon, you have to activate it from Remix plugin manager.

Go to the plugin manager by clicking the [image: _images/a-plug.png] (plug) icon and activate Solidity Unit Testing plugin.

[image: _images/a-unit-testing-from-pm.png]

Now double check icon will appear on the left side icon bar. Clicking on icon will load the plugin in the side panel.

Alternatively, just select Solidity environment from Remix IDE Home tab. This will activate Solidity Unit Testing plugin along with Solidity Compiler, Deploy & Run Transactions & Solidity Static Analysis plugins.

After successful loading, plugin looks like this:

[image: _images/a-unit-testing-feature.png]

Test directory

Plugin asks you to provide a directory which will be your workspace only for this plugin. To select directory, as soon as you add / to the path, it shows the possible options.

[image: _images/a-unit-testing-test-directory.png]

Once selected, this directory will be used to load test files and to store newly generated test files.

Default test directory is browser/tests.

Generate

Select a solidity file which you want to test and click on the button Generate. It will generate a test file dedicated to selected file in the test directory.

If no file is selected, it will still create a file with generic name as newFile_test.sol.

This file contains sufficient information to give better understanding about developing tests for a contract.

Generic file looks as:

pragma solidity >=0.4.22 <0.8.0;
import "remix_tests.sol"; // this import is automatically injected by Remix.
import "remix_accounts.sol";
// Import here the file to test.

// File name has to end with '_test.sol', this file can contain more than one testSuite contracts
contract testSuite {

 /// 'beforeAll' runs before all other tests
 /// More special functions are: 'beforeEach', 'beforeAll', 'afterEach' & 'afterAll'
 function beforeAll() public {
 // Here should instantiate tested contract
 Assert.equal(uint(1), uint(1), "1 should be equal to 1");
 }

 function checkSuccess() public {
 // Use 'Assert' to test the contract,
 // See documentation: https://remix-ide.readthedocs.io/en/latest/assert_library.html
 Assert.equal(uint(2), uint(2), "2 should be equal to 2");
 Assert.notEqual(uint(2), uint(3), "2 should not be equal to 3");
 }

 function checkSuccess2() public pure returns (bool) {
 // Use the return value (true or false) to test the contract
 return true;
 }

 function checkFailure() public {
 Assert.equal(uint(1), uint(2), "1 is not equal to 2");
 }

 /// Custom Transaction Context
 /// See more: https://remix-ide.readthedocs.io/en/latest/unittesting.html#customization
 /// #sender: account-1
 /// #value: 100
 function checkSenderAndValue() public payable {
 // account index varies 0-9, value is in wei
 Assert.equal(msg.sender, TestsAccounts.getAccount(1), "Invalid sender");
 Assert.equal(msg.value, 100, "Invalid value");
 }
}

Write Tests

Write sufficient unit tests to ensure that your contract works as expected under different scenarios.

Remix injects a built-in assert library which can be used for testing. You can visit the library documentation here.

Apart from this, Remix allows usage of some special functions in the test file to make testing more structural. They are as:

	beforeEach() - Runs before each test

	beforeAll() - Runs before all tests

	afterEach() - Runs after each test

	afterAll() - Runs after all tests

To get started, see this simple example.

Run

Once you are done with writing tests, select the file(s) and click on Run to execute the tests. The execution will run in a separate environment. After completing the execution of one file, a test summary will be show as below:

[image: _images/a-unit-testing-run-result.png]

For failed tests, there will be more assertion details to analyze the issue. Clicking on failed test will highlight the relevant line of code in the editor.

Stop

If you have selected multiple files to run the tests and want to stop the execution, click on Stop button. It will stop execution after running the tests for current file.

Customization

Remix facilitates users with various types of customizations to test a contract properly.

1. Custom Compiler Context

Solidity Unit Testing refers to the Solidity Compiler plugin for compiler configurations. Configure Compiler, EVM Version, Enable Optimization & runs in the Solidity Compiler plugin and this will be used in the Solidity Unit Testing plugin for contract compilation before running unit tests.

[image: _images/a-unit-testing-custom-compiler-config.png]

2. Custom Transaction Context

For interacting with a contract’s method, the prime parameters of a transaction are from address, value & gas. Typically, a method’s behaviour is tested with different values of these parameters.

One can input custom values for msg.sender & msg.value of transaction using NatSpec comments, like:

/// #sender: account-0
/// #value: 10
function checkSenderIs0AndValueis10 () public payable {
 Assert.equal(msg.sender, TestsAccounts.getAccount(0), "wrong sender in checkSenderIs0AndValueis10");
 Assert.equal(msg.value, 10, "wrong value in checkSenderIs0AndValueis10");
}

Instructions to use:

	Parameters must be defined in the method’s NatSpec

	Each parameter key should be prefixed with a hash (#) and end with a colon following a space (:) like #sender: & #value:

	For now, customization is only available for parameters sender & value

	Sender is the from address of a transaction which is accessed using msg.sender inside a contract method. It should be defined in a fixed format as ‘account-<account_index>’

	<account_index> varies from 0-2 before remix-ide release v0.10.0 and 0-9 afterwards

	remix_accounts.sol must be imported in your test file to use custom sender

	Value is value sent along with a transaction in wei which is accessed using msg.value inside a contract method. It should be a number.

Regarding gas, Remix estimates the required gas for each transaction internally. Still if a contract deployment fails with Out-of-Gas error, it tries to redeploy it by doubling the gas. Deployment failing with double gas will show error: contract deployment failed after trying twice: The contract code couldn't be stored, please check your gas limit

Various test examples can be seen in examples section.

Points to remember

	A test contract cannot have a method with parameters. Having one such method will show error: Method 'methodname' can not have parameters inside a test contract

	Number of test accounts are 3 before remix-ide release v0.10.0 and 10 afterwards

	While a test file which imports remix_accounts.sol might not compile successfully with Solidity Compiler plugin, do not worry, this will have no bearing on its success with Solidity Unit Testing plugin.

Command Line Interface

remix-tests [image: _images/e87fd6d1ccd334801195fb6a1dc7486094113efe.svg] [https://www.npmjs.com/package/@remix-project/remix-tests]

remix-tests is a tool which can be used as a CLI (Command Line Interface) solution to run the solidity unit tests. This is the same tool which works as a library underneath Remix’s Solidity Unit Testing plugin. It is available on NPM as @remix-project/remix-tests.

Get started

You can install it using NPM:

	As a dev dependency:

npm install --save-dev @remix-project/remix-tests

	As a global NPM module:

npm -g install @remix-project/remix-tests

To confirm installation, run:

$ remix-tests version
0.1.36

Version should be same as on NPM.

How to use

You can see all available options using help command.

$ remix-tests help
Usage: remix-tests [options] [command]

Options:
 -V, --version output the version number
 -c, --compiler <string> set compiler version (e.g: 0.6.1, 0.7.1 etc)
 -e, --evm <string> set EVM version (e.g: petersburg, istanbul etc)
 -o, --optimize <bool> enable/disable optimization
 -r, --runs <number> set runs (e.g: 150, 250 etc)
 -v, --verbose <level> set verbosity level (0 to 5)
 -h, --help output usage information

Commands:
 version output the version number
 help output usage information

General structure of a command is as:

$ remix-tests <options> <file/directory path>

To run all test files inside examples directory

$ remix-tests examples/

To run single test file named simple_storage_test.sol inside examples directory

$ remix-tests examples/simple_storage_test.sol

NOTE: remix-tests will assume that name of test(s) file ends with "_test.sol". e.g simple_storage_test.sol

Example

Consider for a simple storage contract named simple_storage.sol:

pragma solidity >=0.4.22 <=0.8.0;

contract SimpleStorage {
 uint public storedData;

 constructor() public {
 storedData = 100;
 }

 function set(uint x) public {
 storedData = x;
 }

 function get() public view returns (uint retVal) {
 return storedData;
 }
}

Test file simple_storage_test.sol can be as:

pragma solidity >=0.4.22 <=0.8.0;
import "remix_tests.sol"; // injected by remix-tests
import "./simple_storage.sol";

contract MyTest {
 SimpleStorage foo;

 function beforeAll() public {
 foo = new SimpleStorage();
 }

 function initialValueShouldBe100() public returns (bool) {
 return Assert.equal(foo.get(), 100, "initial value is not correct");
 }

 function initialValueShouldNotBe200() public returns (bool) {
 return Assert.notEqual(foo.get(), 200, "initial value is not correct");
 }

 function shouldTriggerOneFail() public {
 Assert.equal(uint(1), uint(2), "uint test 1 fails");
 Assert.notEqual(uint(1), uint(2), "uint test 2 passes");
 }

 function shouldTriggerOnePass() public {
 Assert.equal(uint(1), uint(1), "uint test 3 passes");
 }
}

Running simple_storage_test.sol file will output as:

$ remix-tests simple_storage_test.sol

	👁	:: Running remix-tests - Unit testing for solidity ::	👁

'creation of library remix_tests.sol:Assert pending...'

	◼ MyTest
	✓ Initial value should be100
	✓ Initial value should not be200
	✘ Should trigger one fail
	✓ Should trigger one pass

3 passing (0.282s)
1 failing

 1) MyTest: Should trigger one fail

	 error: uint test 1 fails
	 expected value to be equal to: 2
	 returned: 1

Custom compiler context

Most of the remix-tests options are there to define a custom compiler context. With an extended custom compiler context, execution of above test file will go as:

$ remix-tests --compiler 0.7.4 --evm istanbul --optimize true --runs 300 simple_storage_test.sol

	👁	:: Running remix-tests - Unit testing for solidity ::	👁

[14:03:18] info: Compiler version set to 0.7.4. Latest version is 0.8.0
[14:03:18] info: EVM set to istanbul
[14:03:18] info: Optimization is enabled
[14:03:18] info: Runs set to 300
Loading remote solc version v0.7.4+commit.3f05b770 ...
'creation of library remix_tests.sol:Assert pending...'

	◼ MyTest
	✓ Initial value should be100
	✓ Initial value should not be200
	✘ Should trigger one fail
	✓ Should trigger one pass

3 passing (0.316s)
1 failing

 1) MyTest: Should trigger one fail

	 error: uint test 1 fails
	 expected value to be equal to: 2
	 returned: 1

Rememeber, custom compiler version will require internet connection to load compiler.

As a CI solution

remix-tests can also be used for continuous integration (CI) testing.

For implementation example, see Su Squares contract [https://github.com/su-squares/ethereum-contract/tree/e542f37d4f8f6c7b07d90a6554424268384a4186] and Travis build [https://travis-ci.org/su-squares/ethereum-contract/builds/446186067] that uses remix-tests for continuous integration.

Remix Assert Library

	Assert.ok(value[, message])

	Assert.equal(actual, expected[, message])

	Assert.notEqual(actual, expected[, message])

	Assert.greaterThan(value1, value2[, message])

	Assert.lesserThan(value1, value2[, message])

Assert

Assert.ok(value[, message])

	value: <bool>

	message: <string>

Tests if value is truthy. message is returned in case of failure.

Examples:

Assert.ok(true);
// OK
Assert.ok(false, "it\'s false");
// error: it's false

Assert.equal(actual, expected[, message])

	actual: <uint | int | bool | address | bytes32 | string>

	expected: <uint | int | bool | address | bytes32 | string>

	message: <string>

Tests if actual & expected values are same. message is returned in case of failure.

Examples:

Assert.equal(string("a"), "a");
// OK
Assert.equal(uint(100), 100);
// OK
foo.set(200)
Assert.equal(foo.get(), 200);
// OK
Assert.equal(foo.get(), 100, "value should be 200");
// error: value should be 200

Assert.notEqual(actual, expected[, message])

	actual: <uint | int | bool | address | bytes32 | string>

	expected: <uint | int | bool | address | bytes32 | string>

	message: <string>

Tests if actual & expected values are not same. message is returned in case of failure.

Examples:

Assert.notEqual(string("a"), "b");
// OK
foo.set(200)
Assert.notEqual(foo.get(), 200, "value should not be 200");
// error: value should not be 200

Assert.greaterThan(value1, value2[, message])

	value1: <uint | int>

	value2: <uint | int>

	message: <string>

Tests if value1 is greater than value2. message is returned in case of failure.

Examples:

Assert.greaterThan(uint(2), uint(1));
// OK
Assert.greaterThan(uint(-2), uint(1));
// OK
Assert.greaterThan(int(2), int(1));
// OK
Assert.greaterThan(int(-2), int(-1), "-2 is not greater than -1");
// error: -2 is not greater than -1

Assert.lesserThan(value1, value2[, message])

	value1: <uint | int>

	value2: <uint | int>

	message: <string>

Tests if value1 is lesser than value2. message is returned in case of failure.

Examples:

Assert.lesserThan(int(-2), int(-1));
// OK
Assert.lesserThan(int(2), int(1), "2 is not lesser than 1");
// error: 2 is not lesser than 1

Testing by Example

Here are some examples which can give you better understanding to plan your tests.

Note: Examples in this section are intended to give you a push for development. We don’t recommend to rely on them without verifying at your end.

1. Simple example

In this example, we test setting & getting variables.

Contract/Program to be tested: Simple_storage.sol

pragma solidity >=0.4.22 <0.7.0;

contract SimpleStorage {
 uint public storedData;

 constructor() public {
 storedData = 100;
 }

 function set(uint x) public {
 storedData = x;
 }

 function get() public view returns (uint retVal) {
 return storedData;
 }
}

Test contract/program: simple_storage_test.sol

pragma solidity >=0.4.22 <0.7.0;
import "remix_tests.sol";
import "./Simple_storage.sol";

contract MyTest {
 SimpleStorage foo;

 // beforeEach works before running each test
 function beforeEach() public {
 foo = new SimpleStorage();
 }

 /// Test if initial value is set correctly
 function initialValueShouldBe100() public returns (bool) {
 return Assert.equal(foo.get(), 100, "initial value is not correct");
 }

 /// Test if value is set as expected
 function valueIsSet200() public returns (bool) {
 foo.set(200);
 return Assert.equal(foo.get(), 200, "value is not 200");
 }
}

2. Testing a method involving msg.sender

In Solidity, msg.sender plays a great role in access management of a smart contract methods interaction. Different msg.sender can help to test a contract involving multiple accounts with different roles. Here is an example for testing such case:

Contract/Program to be tested: Sender.sol

pragma solidity >=0.4.22 <0.7.0;
contract Sender {
 address private owner;

 constructor() public {
 owner = msg.sender;
 }

 function updateOwner(address newOwner) public {
 require(msg.sender == owner, "only current owner can update owner");
 owner = newOwner;
 }

 function getOwner() public view returns (address) {
 return owner;
 }
}

Test contract/program: Sender_test.sol

pragma solidity >=0.4.22 <0.7.0;
import "remix_tests.sol"; // this import is automatically injected by Remix
import "remix_accounts.sol";
import "./Sender.sol";

// Inherit 'Sender' contract
contract SenderTest is Sender {
 /// Define variables referring to different accounts
 address acc0;
 address acc1;
 address acc2;

 /// Initiate accounts variable
 function beforeAll() public {
 acc0 = TestsAccounts.getAccount(0);
 acc1 = TestsAccounts.getAccount(1);
 acc2 = TestsAccounts.getAccount(2);
 }

 /// Test if initial owner is set correctly
 function testInitialOwner() public {
 // account at zero index (account-0) is default account, so current owner should be acc0
 Assert.equal(getOwner(), acc0, 'owner should be acc0');
 }

 /// Update owner first time
 /// This method will be called by default account(account-0) as there is no custom sender defined
 function updateOwnerOnce() public {
 // check method caller is as expected
 Assert.ok(msg.sender == acc0, 'caller should be default account i.e. acc0');
 // update owner address to acc1
 updateOwner(acc1);
 // check if owner is set to expected account
 Assert.equal(getOwner(), acc1, 'owner should be updated to acc1');
 }

 /// Update owner again by defining custom sender
 /// #sender: account-1 (sender is account at index '1')
 function updateOwnerOnceAgain() public {
 // check if caller is custom and is as expected
 Assert.ok(msg.sender == acc1, 'caller should be custom account i.e. acc1');
 // update owner address to acc2. This will be successful because acc1 is current owner & caller both
 updateOwner(acc2);
 // check if owner is set to expected account i.e. account2
 Assert.equal(getOwner(), acc2, 'owner should be updated to acc2');
 }
}

3. Testing method execution

With Solidity, one can directly verify the changes made by a method in storage by retrieving those variables from a contract. But testing for a successful method execution takes some strategy. Well that is not entirely true, when a test is successful - it is usually obvious why it passed. However, when a test fails, it is essential to understand why it failed.

To help in such cases, Solidity introduced the try-catch statement in version 0.6.0. Previously, we had to use low-level calls to track down what was going on.

Here is an example test file that use both try-catch blocks and low level calls:

Contract/Program to be tested: AttendanceRegister.sol

pragma solidity >=0.4.22 <0.7.0;
contract AttendanceRegister {
 struct Student{
 string name;
 uint class;
 }

 event Added(string name, uint class, uint time);

 mapping(uint => Student) public register; // roll number => student details

 function add(uint rollNumber, string memory name, uint class) public returns (uint256){
 require(class > 0 && class <= 12, "Invalid class");
 require(register[rollNumber].class == 0, "Roll number not available");
 Student memory s = Student(name, class);
 register[rollNumber] = s;
 emit Added(name, class, now);
 return rollNumber;
 }

 function getStudentName(uint rollNumber) public view returns (string memory) {
 return register[rollNumber].name;
 }
}

Test contract/program: AttendanceRegister_test.sol

pragma solidity >=0.4.22 <0.7.0;
import "remix_tests.sol"; // this import is automatically injected by Remix.
import "./AttendanceRegister.sol";

contract AttendanceRegisterTest {

 AttendanceRegister ar;

 /// 'beforeAll' runs before all other tests
 function beforeAll () public {
 // Create an instance of contract to be tested
 ar = new AttendanceRegister();
 }

 /// For solidity version greater or equal to 0.6.0,
 /// See: https://solidity.readthedocs.io/en/v0.6.0/control-structures.html#try-catch
 /// Test 'add' using try-catch
 function testAddSuccessUsingTryCatch() public {
 // This will pass
 try ar.add(101, 'secondStudent', 11) returns (uint256 r) {
 Assert.equal(r, 101, 'wrong rollNumber');
 } catch Error(string memory /*reason*/) {
 // This is executed in case
 // revert was called inside getData
 // and a reason string was provided.
 Assert.ok(false, 'failed with reason');
 } catch (bytes memory /*lowLevelData*/) {
 // This is executed in case revert() was used
 // or there was a failing assertion, division
 // by zero, etc. inside getData.
 Assert.ok(false, 'failed unexpected');
 }
 }

 /// Test failure case of 'add' using try-catch
 function testAddFailureUsingTryCatch1() public {
 // This will revert on 'require(class > 0 && class <= 12, "Invalid class");' for class '13'
 try ar.add(101, 'secondStudent', 13) returns (uint256 r) {
 Assert.ok(false, 'method execution should fail');
 } catch Error(string memory reason) {
 // Compare failure reason, check if it is as expected
 Assert.equal(reason, 'Invalid class', 'failed with unexpected reason');
 } catch (bytes memory /*lowLevelData*/) {
 Assert.ok(false, 'failed unexpected');
 }
 }

 /// Test another failure case of 'add' using try-catch
 function testAddFailureUsingTryCatch2() public {
 // This will revert on 'require(register[rollNumber].class == 0, "Roll number not available");' for rollNumber '101'
 try ar.add(101, 'secondStudent', 11) returns (uint256 r) {
 Assert.ok(false, 'method execution should fail');
 } catch Error(string memory reason) {
 // Compare failure reason, check if it is as expected
 Assert.equal(reason, 'Roll number not available', 'failed with unexpected reason');
 } catch (bytes memory /*lowLevelData*/) {
 Assert.ok(false, 'failed unexpected');
 }
 }

 /// For solidity version less than 0.6.0, low level call can be used
 /// See: https://solidity.readthedocs.io/en/v0.6.0/units-and-global-variables.html#members-of-address-types
 /// Test success case of 'add' using low level call
 function testAddSuccessUsingCall() public {
 bytes memory methodSign = abi.encodeWithSignature('add(uint256,string,uint256)', 102, 'firstStudent', 10);
 (bool success, bytes memory data) = address(ar).call(methodSign);
 // 'success' stores the result in bool, this can be used to check whether method call was successful
 Assert.equal(success, true, 'execution should be successful');
 // 'data' stores the returned data which can be decoded to get the actual result
 uint rollNumber = abi.decode(data, (uint256));
 // check if result is as expected
 Assert.equal(rollNumber, 102, 'wrong rollNumber');
 }

 /// Test failure case of 'add' using low level call
 function testAddFailureUsingCall() public {
 bytes memory methodSign = abi.encodeWithSignature('add(uint256,string,uint256)', 102, 'duplicate', 10);
 (bool success, bytes memory data) = address(ar).call(methodSign);
 // 'success' will be false if method execution is not successful
 Assert.equal(success, false, 'execution should be successful');
 }
}

4. Testing a method involving msg.value

In Solidity, ether can be passed along with a method call which is accessed inside contract as msg.value. Sometimes, multiple calculations in a method are performed based on msg.value which can be tested with various values using Remix’s Custom transaction context. See the example:

Contract/Program to be tested: Value.sol

pragma solidity >=0.4.22 <0.7.0;
contract Value {
 uint256 public tokenBalance;

 constructor() public {
 tokenBalance = 0;
 }

 function addValue() payable public {
 tokenBalance = tokenBalance + (msg.value/10);
 }

 function getTokenBalance() view public returns (uint256) {
 return tokenBalance;
 }
}

Test contract/program: Value_test.sol

pragma solidity >=0.4.22 <0.7.0;
import "remix_tests.sol";
import "./Value.sol";

contract ValueTest{
 Value v;

 function beforeAll() public {
 // create a new instance of Value contract
 v = new Value();
 }

 /// Test initial balance
 function testInitialBalance() public {
 // initially token balance should be 0
 Assert.equal(v.getTokenBalance(), 0, 'token balance should be 0 initially');
 }

 /// For Solidity version greater than 0.6.1
 /// Test 'addValue' execution by passing custom ether amount
 /// #value: 200
 function addValueOnce() public payable {
 // check if value is same as provided through devdoc
 Assert.equal(msg.value, 200, 'value should be 200');
 // execute 'addValue'
 v.addValue{gas: 40000, value: 200}(); // introduced in Solidity version 0.6.2
 // As per the calculation, check the total balance
 Assert.equal(v.getTokenBalance(), 20, 'token balance should be 20');
 }

 /// For Solidity version less than 0.6.2
 /// Test 'addValue' execution by passing custom ether amount again using low level call
 /// #value: 100
 function addValueAgain() public payable {
 Assert.equal(msg.value, 100, 'value should be 100');
 bytes memory methodSign = abi.encodeWithSignature('addValue()');
 (bool success, bytes memory data) = address(v).call.gas(40000).value(100)(methodSign);
 Assert.equal(success, true, 'execution should be successful');
 Assert.equal(v.getTokenBalance(), 30, 'token balance should be 30');
 }
}

Build Artifact

When a compilation succeeds, Remix creates two JSON files for each compiled contract. One of these files captures the output from the Solidity compilation. This file will be named contractName_metadata.json.

The other JSON file is named contractName.json . The contractName.json file contains the compilation’s artifact that is needed for linking a library to the file. It contains the link to the libraries, the bytecode, the deployed bytecode, the gas estimation, the method identifiers, and the ABI.

In order to generate these artifact files, the Generate contract metadata box in the General settings section of the Settings module needs to be checked. The these metadatas files will then be generated when you compile a file and will be placed in the artifacts folder - which you can see in the Files Explorers plugin.

You can write scripts that can access either of these files.

Library Deployment with filename.json

By default Remix automatically deploys needed libraries.

When you open the metadata file for the libraries - artifact/filename.json you will see the following sections:

linkReferences contains a map representing libraries which depend on the current contract.
Values are addresses of libraries used for linking the contract.

autoDeployLib defines if the libraries should be auto deployed by Remix or if the contract should be linked with libraries described in linkReferences

Note that Remix will resolve addresses corresponding to the current network.
By default, a configuration key follows the form: <network_name>:<networkd_id>, but it is also possible
to define <network_name> or <network_id> as keys.

Here is a sample metadata file for linking a library:

{
	"VM:-": {
		"linkReferences": {
			"browser/Untitled.sol": {
				"lib": "<address>",
				"lib2": "<address>"
			}
		},
		"autoDeployLib": true
	},
	"main:1": {
		"linkReferences": {
			"browser/Untitled.sol": {
				"lib": "<address>",
				"lib2": "<address>"
			}
		},
		"autoDeployLib": true
	},
	"ropsten:3": {
		"linkReferences": {
			"browser/Untitled.sol": {
				"lib": "<address>",
				"lib2": "<address>"
			}
		},
		"autoDeployLib": true
	},
	"rinkeby:4": {
		"linkReferences": {
			"browser/Untitled.sol": {
				"lib": "<address>",
				"lib2": "<address>"
			}
		},
		"autoDeployLib": true
	},
	"kovan:42": {
		"linkReferences": {
			"browser/Untitled.sol": {
				"lib": "<address>",
				"lib2": "<address>"
			}
		},
		"autoDeployLib": true
	},
	"data": {
		"bytecode": {
			"linkReferences": {},
			"object": "608060405234801561001057600080fd5b506040516108723803806108728339818101604052602081101561003357600080fd5b8101908080519060200190929190505050336000806101000a81548173ff021916908373ff16021790555060018060008060009054906101000a900473ff1673ff1673ff168152602001908152602001600020600001819055508060ff166002816100fd9190610104565b5050610157565b81548183558181111561012b5781836000526020600020918201910161012a9190610130565b5b505050565b61015491905b808211156101505760008082016000905550600101610136565b5090565b90565b61070c806101666000396000f3fe608060405234801561001057600080fd5b506004361061004c5760003560e01c80635c19a95c14610051578063609ff1bd146100955780639e7b8d61146100b9578063b3f98adc146100fd575b600080fd5b6100936004803603602081101561006757600080fd5b81019080803573ff16906020019092919050505061012e565b005b61009d610481565b604051808260ff1660ff16815260200191505060405180910390f35b6100fb600480360360208110156100cf57600080fd5b81019080803573ff1690602001909291905050506104f9565b005b61012c6004803603602081101561011357600080fd5b81019080803560ff1690602001909291905050506105f6565b005b6000600160003373ff1673ff16815260200190815260200160002090508060010160009054906101000a900460ff161561018e575061047e565b5b600073ff16600160008473ff1673ff16815260200190815260200160002060010160029054906101000a900473ff1673ff16141580156102bc57503373ff16600160008473ff1673ff16815260200190815260200160002060010160029054906101000a900473ff1673ff1614155b1561032b57600160008373ff1673ff16815260200190815260200160002060010160029054906101000a900473ff16915061018f565b3373ff168273ff161415610365575061047e565b60018160010160006101000a81548160ff021916908315150217905550818160010160026101000a81548173ff021916908373ff1602179055506000600160008473ff1673ff16815260200190815260200160002090508060010160009054906101000a900460ff161561046457816000015460028260010160019054906101000a900460ff1660ff168154811061044557fe5b906000526020600020016000016000828254019250508190555061047b565b816000015481600001600082825401925050819055505b50505b50565b6000806000905060008090505b6002805490508160ff1610156104f4578160028260ff16815481106104af57fe5b906000526020600020016000015411156104e75760028160ff16815481106104d357fe5b906000526020600020016000015491508092505b808060010191505061048e565b505090565b6000809054906101000a900473ff1673ff163373ff161415806105a15750600160008273ff1673ff16815260200190815260200160002060010160009054906101000a900460ff165b156105ab576105f3565b60018060008373ff1673ff168152602001908152602001600020600001819055505b50565b6000600160003373ff1673ff16815260200190815260200160002090508060010160009054906101000a900460ff168061065e57506002805490508260ff1610155b1561066957506106d4565b60018160010160006101000a81548160ff021916908315150217905550818160010160016101000a81548160ff021916908360ff160217905550806000015460028360ff16815481106106b857fe5b9060005260206000200160000160008282540192505081905550505b5056fea265627a7a72315820457d09494a1d1d64ebd9b931a6c692e671dc1f14d4a0c6600f7aa00fed36011064736f6c634300050b0032",
			"opcodes": "PUSH1 0x80 PUSH1 0x40 MSTORE CALLVALUE DUP1 ISZERO PUSH2 0x10 JUMPI PUSH1 0x0 DUP1 REVERT JUMPDEST POP PUSH1 0x40 MLOAD PUSH2 0x872 CODESIZE SUB DUP1 PUSH2 0x872 DUP4 CODECOPY DUP2 DUP2 ADD PUSH1 0x40 MSTORE PUSH1 0x20 DUP2 LT ISZERO PUSH2 0x33 JUMPI PUSH1 0x0 DUP1 REVERT JUMPDEST DUP2 ADD SWAP1 DUP1 DUP1 MLOAD SWAP1 PUSH1 0x20 ADD SWAP1 SWAP3 SWAP2 SWAP1 POP POP POP CALLER PUSH1 0x0 DUP1 PUSH2 0x100 EXP DUP2 SLOAD DUP2 PUSH20 0xFF MUL NOT AND SWAP1 DUP4 PUSH20 0xFF AND MUL OR SWAP1 SSTORE POP PUSH1 0x1 DUP1 PUSH1 0x0 DUP1 PUSH1 0x0 SWAP1 SLOAD SWAP1 PUSH2 0x100 EXP SWAP1 DIV PUSH20 0xFF AND PUSH20 0xFF AND PUSH20 0xFF AND DUP2 MSTORE PUSH1 0x20 ADD SWAP1 DUP2 MSTORE PUSH1 0x20 ADD PUSH1 0x0 KECCAK256 PUSH1 0x0 ADD DUP2 SWAP1 SSTORE POP DUP1 PUSH1 0xFF AND PUSH1 0x2 DUP2 PUSH2 0xFD SWAP2 SWAP1 PUSH2 0x104 JUMP JUMPDEST POP POP PUSH2 0x157 JUMP JUMPDEST DUP2 SLOAD DUP2 DUP4 SSTORE DUP2 DUP2 GT ISZERO PUSH2 0x12B JUMPI DUP2 DUP4 PUSH1 0x0 MSTORE PUSH1 0x20 PUSH1 0x0 KECCAK256 SWAP2 DUP3 ADD SWAP2 ADD PUSH2 0x12A SWAP2 SWAP1 PUSH2 0x130 JUMP JUMPDEST JUMPDEST POP POP POP JUMP JUMPDEST PUSH2 0x154 SWAP2 SWAP1 JUMPDEST DUP1 DUP3 GT ISZERO PUSH2 0x150 JUMPI PUSH1 0x0 DUP1 DUP3 ADD PUSH1 0x0 SWAP1 SSTORE POP PUSH1 0x1 ADD PUSH2 0x136 JUMP JUMPDEST POP SWAP1 JUMP JUMPDEST SWAP1 JUMP JUMPDEST PUSH2 0x70C DUP1 PUSH2 0x166 PUSH1 0x0 CODECOPY PUSH1 0x0 RETURN INVALID PUSH1 0x80 PUSH1 0x40 MSTORE CALLVALUE DUP1 ISZERO PUSH2 0x10 JUMPI PUSH1 0x0 DUP1 REVERT JUMPDEST POP PUSH1 0x4 CALLDATASIZE LT PUSH2 0x4C JUMPI PUSH1 0x0 CALLDATALOAD PUSH1 0xE0 SHR DUP1 PUSH4 0x5C19A95C EQ PUSH2 0x51 JUMPI DUP1 PUSH4 0x609FF1BD EQ PUSH2 0x95 JUMPI DUP1 PUSH4 0x9E7B8D61 EQ PUSH2 0xB9 JUMPI DUP1 PUSH4 0xB3F98ADC EQ PUSH2 0xFD JUMPI JUMPDEST PUSH1 0x0 DUP1 REVERT JUMPDEST PUSH2 0x93 PUSH1 0x4 DUP1 CALLDATASIZE SUB PUSH1 0x20 DUP2 LT ISZERO PUSH2 0x67 JUMPI PUSH1 0x0 DUP1 REVERT JUMPDEST DUP2 ADD SWAP1 DUP1 DUP1 CALLDATALOAD PUSH20 0xFF AND SWAP1 PUSH1 0x20 ADD SWAP1 SWAP3 SWAP2 SWAP1 POP POP POP PUSH2 0x12E JUMP JUMPDEST STOP JUMPDEST PUSH2 0x9D PUSH2 0x481 JUMP JUMPDEST PUSH1 0x40 MLOAD DUP1 DUP3 PUSH1 0xFF AND PUSH1 0xFF AND DUP2 MSTORE PUSH1 0x20 ADD SWAP2 POP POP PUSH1 0x40 MLOAD DUP1 SWAP2 SUB SWAP1 RETURN JUMPDEST PUSH2 0xFB PUSH1 0x4 DUP1 CALLDATASIZE SUB PUSH1 0x20 DUP2 LT ISZERO PUSH2 0xCF JUMPI PUSH1 0x0 DUP1 REVERT JUMPDEST DUP2 ADD SWAP1 DUP1 DUP1 CALLDATALOAD PUSH20 0xFF AND SWAP1 PUSH1 0x20 ADD SWAP1 SWAP3 SWAP2 SWAP1 POP POP POP PUSH2 0x4F9 JUMP JUMPDEST STOP JUMPDEST PUSH2 0x12C PUSH1 0x4 DUP1 CALLDATASIZE SUB PUSH1 0x20 DUP2 LT ISZERO PUSH2 0x113 JUMPI PUSH1 0x0 DUP1 REVERT JUMPDEST DUP2 ADD SWAP1 DUP1 DUP1 CALLDATALOAD PUSH1 0xFF AND SWAP1 PUSH1 0x20 ADD SWAP1 SWAP3 SWAP2 SWAP1 POP POP POP PUSH2 0x5F6 JUMP JUMPDEST STOP JUMPDEST PUSH1 0x0 PUSH1 0x1 PUSH1 0x0 CALLER PUSH20 0xFF AND PUSH20 0xFF AND DUP2 MSTORE PUSH1 0x20 ADD SWAP1 DUP2 MSTORE PUSH1 0x20 ADD PUSH1 0x0 KECCAK256 SWAP1 POP DUP1 PUSH1 0x1 ADD PUSH1 0x0 SWAP1 SLOAD SWAP1 PUSH2 0x100 EXP SWAP1 DIV PUSH1 0xFF AND ISZERO PUSH2 0x18E JUMPI POP PUSH2 0x47E JUMP JUMPDEST JUMPDEST PUSH1 0x0 PUSH20 0xFF AND PUSH1 0x1 PUSH1 0x0 DUP5 PUSH20 0xFF AND PUSH20 0xFF AND DUP2 MSTORE PUSH1 0x20 ADD SWAP1 DUP2 MSTORE PUSH1 0x20 ADD PUSH1 0x0 KECCAK256 PUSH1 0x1 ADD PUSH1 0x2 SWAP1 SLOAD SWAP1 PUSH2 0x100 EXP SWAP1 DIV PUSH20 0xFF AND PUSH20 0xFF AND EQ ISZERO DUP1 ISZERO PUSH2 0x2BC JUMPI POP CALLER PUSH20 0xFF AND PUSH1 0x1 PUSH1 0x0 DUP5 PUSH20 0xFF AND PUSH20 0xFF AND DUP2 MSTORE PUSH1 0x20 ADD SWAP1 DUP2 MSTORE PUSH1 0x20 ADD PUSH1 0x0 KECCAK256 PUSH1 0x1 ADD PUSH1 0x2 SWAP1 SLOAD SWAP1 PUSH2 0x100 EXP SWAP1 DIV PUSH20 0xFF AND PUSH20 0xFF AND EQ ISZERO JUMPDEST ISZERO PUSH2 0x32B JUMPI PUSH1 0x1 PUSH1 0x0 DUP4 PUSH20 0xFF AND PUSH20 0xFF AND DUP2 MSTORE PUSH1 0x20 ADD SWAP1 DUP2 MSTORE PUSH1 0x20 ADD PUSH1 0x0 KECCAK256 PUSH1 0x1 ADD PUSH1 0x2 SWAP1 SLOAD SWAP1 PUSH2 0x100 EXP SWAP1 DIV PUSH20 0xFF AND SWAP2 POP PUSH2 0x18F JUMP JUMPDEST CALLER PUSH20 0xFF AND DUP3 PUSH20 0xFF AND EQ ISZERO PUSH2 0x365 JUMPI POP PUSH2 0x47E JUMP JUMPDEST PUSH1 0x1 DUP2 PUSH1 0x1 ADD PUSH1 0x0 PUSH2 0x100 EXP DUP2 SLOAD DUP2 PUSH1 0xFF MUL NOT AND SWAP1 DUP4 ISZERO ISZERO MUL OR SWAP1 SSTORE POP DUP2 DUP2 PUSH1 0x1 ADD PUSH1 0x2 PUSH2 0x100 EXP DUP2 SLOAD DUP2 PUSH20 0xFF MUL NOT AND SWAP1 DUP4 PUSH20 0xFF AND MUL OR SWAP1 SSTORE POP PUSH1 0x0 PUSH1 0x1 PUSH1 0x0 DUP5 PUSH20 0xFF AND PUSH20 0xFF AND DUP2 MSTORE PUSH1 0x20 ADD SWAP1 DUP2 MSTORE PUSH1 0x20 ADD PUSH1 0x0 KECCAK256 SWAP1 POP DUP1 PUSH1 0x1 ADD PUSH1 0x0 SWAP1 SLOAD SWAP1 PUSH2 0x100 EXP SWAP1 DIV PUSH1 0xFF AND ISZERO PUSH2 0x464 JUMPI DUP2 PUSH1 0x0 ADD SLOAD PUSH1 0x2 DUP3 PUSH1 0x1 ADD PUSH1 0x1 SWAP1 SLOAD SWAP1 PUSH2 0x100 EXP SWAP1 DIV PUSH1 0xFF AND PUSH1 0xFF AND DUP2 SLOAD DUP2 LT PUSH2 0x445 JUMPI INVALID JUMPDEST SWAP1 PUSH1 0x0 MSTORE PUSH1 0x20 PUSH1 0x0 KECCAK256 ADD PUSH1 0x0 ADD PUSH1 0x0 DUP3 DUP3 SLOAD ADD SWAP3 POP POP DUP2 SWAP1 SSTORE POP PUSH2 0x47B JUMP JUMPDEST DUP2 PUSH1 0x0 ADD SLOAD DUP2 PUSH1 0x0 ADD PUSH1 0x0 DUP3 DUP3 SLOAD ADD SWAP3 POP POP DUP2 SWAP1 SSTORE POP JUMPDEST POP POP JUMPDEST POP JUMP JUMPDEST PUSH1 0x0 DUP1 PUSH1 0x0 SWAP1 POP PUSH1 0x0 DUP1 SWAP1 POP JUMPDEST PUSH1 0x2 DUP1 SLOAD SWAP1 POP DUP2 PUSH1 0xFF AND LT ISZERO PUSH2 0x4F4 JUMPI DUP2 PUSH1 0x2 DUP3 PUSH1 0xFF AND DUP2 SLOAD DUP2 LT PUSH2 0x4AF JUMPI INVALID JUMPDEST SWAP1 PUSH1 0x0 MSTORE PUSH1 0x20 PUSH1 0x0 KECCAK256 ADD PUSH1 0x0 ADD SLOAD GT ISZERO PUSH2 0x4E7 JUMPI PUSH1 0x2 DUP2 PUSH1 0xFF AND DUP2 SLOAD DUP2 LT PUSH2 0x4D3 JUMPI INVALID JUMPDEST SWAP1 PUSH1 0x0 MSTORE PUSH1 0x20 PUSH1 0x0 KECCAK256 ADD PUSH1 0x0 ADD SLOAD SWAP2 POP DUP1 SWAP3 POP JUMPDEST DUP1 DUP1 PUSH1 0x1 ADD SWAP2 POP POP PUSH2 0x48E JUMP JUMPDEST POP POP SWAP1 JUMP JUMPDEST PUSH1 0x0 DUP1 SWAP1 SLOAD SWAP1 PUSH2 0x100 EXP SWAP1 DIV PUSH20 0xFF AND PUSH20 0xFF AND CALLER PUSH20 0xFF AND EQ ISZERO DUP1 PUSH2 0x5A1 JUMPI POP PUSH1 0x1 PUSH1 0x0 DUP3 PUSH20 0xFF AND PUSH20 0xFF AND DUP2 MSTORE PUSH1 0x20 ADD SWAP1 DUP2 MSTORE PUSH1 0x20 ADD PUSH1 0x0 KECCAK256 PUSH1 0x1 ADD PUSH1 0x0 SWAP1 SLOAD SWAP1 PUSH2 0x100 EXP SWAP1 DIV PUSH1 0xFF AND JUMPDEST ISZERO PUSH2 0x5AB JUMPI PUSH2 0x5F3 JUMP JUMPDEST PUSH1 0x1 DUP1 PUSH1 0x0 DUP4 PUSH20 0xFF AND PUSH20 0xFF AND DUP2 MSTORE PUSH1 0x20 ADD SWAP1 DUP2 MSTORE PUSH1 0x20 ADD PUSH1 0x0 KECCAK256 PUSH1 0x0 ADD DUP2 SWAP1 SSTORE POP JUMPDEST POP JUMP JUMPDEST PUSH1 0x0 PUSH1 0x1 PUSH1 0x0 CALLER PUSH20 0xFF AND PUSH20 0xFF AND DUP2 MSTORE PUSH1 0x20 ADD SWAP1 DUP2 MSTORE PUSH1 0x20 ADD PUSH1 0x0 KECCAK256 SWAP1 POP DUP1 PUSH1 0x1 ADD PUSH1 0x0 SWAP1 SLOAD SWAP1 PUSH2 0x100 EXP SWAP1 DIV PUSH1 0xFF AND DUP1 PUSH2 0x65E JUMPI POP PUSH1 0x2 DUP1 SLOAD SWAP1 POP DUP3 PUSH1 0xFF AND LT ISZERO JUMPDEST ISZERO PUSH2 0x669 JUMPI POP PUSH2 0x6D4 JUMP JUMPDEST PUSH1 0x1 DUP2 PUSH1 0x1 ADD PUSH1 0x0 PUSH2 0x100 EXP DUP2 SLOAD DUP2 PUSH1 0xFF MUL NOT AND SWAP1 DUP4 ISZERO ISZERO MUL OR SWAP1 SSTORE POP DUP2 DUP2 PUSH1 0x1 ADD PUSH1 0x1 PUSH2 0x100 EXP DUP2 SLOAD DUP2 PUSH1 0xFF MUL NOT AND SWAP1 DUP4 PUSH1 0xFF AND MUL OR SWAP1 SSTORE POP DUP1 PUSH1 0x0 ADD SLOAD PUSH1 0x2 DUP4 PUSH1 0xFF AND DUP2 SLOAD DUP2 LT PUSH2 0x6B8 JUMPI INVALID JUMPDEST SWAP1 PUSH1 0x0 MSTORE PUSH1 0x20 PUSH1 0x0 KECCAK256 ADD PUSH1 0x0 ADD PUSH1 0x0 DUP3 DUP3 SLOAD ADD SWAP3 POP POP DUP2 SWAP1 SSTORE POP POP JUMPDEST POP JUMP INVALID LOG2 PUSH6 0x627A7A723158 KECCAK256 GASLIMIT PUSH30 0x9494A1D1D64EBD9B931A6C692E671DC1F14D4A0C6600F7AA00FED360110 PUSH5 0x736F6C6343 STOP SDIV SIGNEXTEND STOP ORIGIN ",
			"sourceMap": "33:2130:0:-;;;382:163;8:9:-1;5:2;;;30:1;27;20:12;5:2;382:163:0;;;;;;;;;;;;;;;13:2:-1;8:3;5:11;2:2;;;29:1;26;19:12;2:2;382:163:0;;;;;;;;;;;;;;;;446:10;432:11;;:24;;;;;;;;;;;;;;;;;;495:1;466:6;:19;473:11;;;;;;;;;;;466:19;;;;;;;;;;;;;;;:26;;:30;;;;525:13;506:32;;:9;:32;;;;;:::i;:::-;;382:163;33:2130;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;;:::o;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::o;:::-;;;;;;;"
		},
		"deployedBytecode": {
			"linkReferences": {},
			"object": "608060405234801561001057600080fd5b506004361061004c5760003560e01c80635c19a95c14610051578063609ff1bd146100955780639e7b8d61146100b9578063b3f98adc146100fd575b600080fd5b6100936004803603602081101561006757600080fd5b81019080803573ff16906020019092919050505061012e565b005b61009d610481565b604051808260ff1660ff16815260200191505060405180910390f35b6100fb600480360360208110156100cf57600080fd5b81019080803573ff1690602001909291905050506104f9565b005b61012c6004803603602081101561011357600080fd5b81019080803560ff1690602001909291905050506105f6565b005b6000600160003373ff1673ff16815260200190815260200160002090508060010160009054906101000a900460ff161561018e575061047e565b5b600073ff16600160008473ff1673ff16815260200190815260200160002060010160029054906101000a900473ff1673ff16141580156102bc57503373ff16600160008473ff1673ff16815260200190815260200160002060010160029054906101000a900473ff1673ff1614155b1561032b57600160008373ff1673ff16815260200190815260200160002060010160029054906101000a900473ff16915061018f565b3373ff168273ff161415610365575061047e565b60018160010160006101000a81548160ff021916908315150217905550818160010160026101000a81548173ff021916908373ff1602179055506000600160008473ff1673ff16815260200190815260200160002090508060010160009054906101000a900460ff161561046457816000015460028260010160019054906101000a900460ff1660ff168154811061044557fe5b906000526020600020016000016000828254019250508190555061047b565b816000015481600001600082825401925050819055505b50505b50565b6000806000905060008090505b6002805490508160ff1610156104f4578160028260ff16815481106104af57fe5b906000526020600020016000015411156104e75760028160ff16815481106104d357fe5b906000526020600020016000015491508092505b808060010191505061048e565b505090565b6000809054906101000a900473ff1673ff163373ff161415806105a15750600160008273ff1673ff16815260200190815260200160002060010160009054906101000a900460ff165b156105ab576105f3565b60018060008373ff1673ff168152602001908152602001600020600001819055505b50565b6000600160003373ff1673ff16815260200190815260200160002090508060010160009054906101000a900460ff168061065e57506002805490508260ff1610155b1561066957506106d4565b60018160010160006101000a81548160ff021916908315150217905550818160010160016101000a81548160ff021916908360ff160217905550806000015460028360ff16815481106106b857fe5b9060005260206000200160000160008282540192505081905550505b5056fea265627a7a72315820457d09494a1d1d64ebd9b931a6c692e671dc1f14d4a0c6600f7aa00fed36011064736f6c634300050b0032",
			"opcodes": "PUSH1 0x80 PUSH1 0x40 MSTORE CALLVALUE DUP1 ISZERO PUSH2 0x10 JUMPI PUSH1 0x0 DUP1 REVERT JUMPDEST POP PUSH1 0x4 CALLDATASIZE LT PUSH2 0x4C JUMPI PUSH1 0x0 CALLDATALOAD PUSH1 0xE0 SHR DUP1 PUSH4 0x5C19A95C EQ PUSH2 0x51 JUMPI DUP1 PUSH4 0x609FF1BD EQ PUSH2 0x95 JUMPI DUP1 PUSH4 0x9E7B8D61 EQ PUSH2 0xB9 JUMPI DUP1 PUSH4 0xB3F98ADC EQ PUSH2 0xFD JUMPI JUMPDEST PUSH1 0x0 DUP1 REVERT JUMPDEST PUSH2 0x93 PUSH1 0x4 DUP1 CALLDATASIZE SUB PUSH1 0x20 DUP2 LT ISZERO PUSH2 0x67 JUMPI PUSH1 0x0 DUP1 REVERT JUMPDEST DUP2 ADD SWAP1 DUP1 DUP1 CALLDATALOAD PUSH20 0xFF AND SWAP1 PUSH1 0x20 ADD SWAP1 SWAP3 SWAP2 SWAP1 POP POP POP PUSH2 0x12E JUMP JUMPDEST STOP JUMPDEST PUSH2 0x9D PUSH2 0x481 JUMP JUMPDEST PUSH1 0x40 MLOAD DUP1 DUP3 PUSH1 0xFF AND PUSH1 0xFF AND DUP2 MSTORE PUSH1 0x20 ADD SWAP2 POP POP PUSH1 0x40 MLOAD DUP1 SWAP2 SUB SWAP1 RETURN JUMPDEST PUSH2 0xFB PUSH1 0x4 DUP1 CALLDATASIZE SUB PUSH1 0x20 DUP2 LT ISZERO PUSH2 0xCF JUMPI PUSH1 0x0 DUP1 REVERT JUMPDEST DUP2 ADD SWAP1 DUP1 DUP1 CALLDATALOAD PUSH20 0xFF AND SWAP1 PUSH1 0x20 ADD SWAP1 SWAP3 SWAP2 SWAP1 POP POP POP PUSH2 0x4F9 JUMP JUMPDEST STOP JUMPDEST PUSH2 0x12C PUSH1 0x4 DUP1 CALLDATASIZE SUB PUSH1 0x20 DUP2 LT ISZERO PUSH2 0x113 JUMPI PUSH1 0x0 DUP1 REVERT JUMPDEST DUP2 ADD SWAP1 DUP1 DUP1 CALLDATALOAD PUSH1 0xFF AND SWAP1 PUSH1 0x20 ADD SWAP1 SWAP3 SWAP2 SWAP1 POP POP POP PUSH2 0x5F6 JUMP JUMPDEST STOP JUMPDEST PUSH1 0x0 PUSH1 0x1 PUSH1 0x0 CALLER PUSH20 0xFF AND PUSH20 0xFF AND DUP2 MSTORE PUSH1 0x20 ADD SWAP1 DUP2 MSTORE PUSH1 0x20 ADD PUSH1 0x0 KECCAK256 SWAP1 POP DUP1 PUSH1 0x1 ADD PUSH1 0x0 SWAP1 SLOAD SWAP1 PUSH2 0x100 EXP SWAP1 DIV PUSH1 0xFF AND ISZERO PUSH2 0x18E JUMPI POP PUSH2 0x47E JUMP JUMPDEST JUMPDEST PUSH1 0x0 PUSH20 0xFF AND PUSH1 0x1 PUSH1 0x0 DUP5 PUSH20 0xFF AND PUSH20 0xFF AND DUP2 MSTORE PUSH1 0x20 ADD SWAP1 DUP2 MSTORE PUSH1 0x20 ADD PUSH1 0x0 KECCAK256 PUSH1 0x1 ADD PUSH1 0x2 SWAP1 SLOAD SWAP1 PUSH2 0x100 EXP SWAP1 DIV PUSH20 0xFF AND PUSH20 0xFF AND EQ ISZERO DUP1 ISZERO PUSH2 0x2BC JUMPI POP CALLER PUSH20 0xFF AND PUSH1 0x1 PUSH1 0x0 DUP5 PUSH20 0xFF AND PUSH20 0xFF AND DUP2 MSTORE PUSH1 0x20 ADD SWAP1 DUP2 MSTORE PUSH1 0x20 ADD PUSH1 0x0 KECCAK256 PUSH1 0x1 ADD PUSH1 0x2 SWAP1 SLOAD SWAP1 PUSH2 0x100 EXP SWAP1 DIV PUSH20 0xFF AND PUSH20 0xFF AND EQ ISZERO JUMPDEST ISZERO PUSH2 0x32B JUMPI PUSH1 0x1 PUSH1 0x0 DUP4 PUSH20 0xFF AND PUSH20 0xFF AND DUP2 MSTORE PUSH1 0x20 ADD SWAP1 DUP2 MSTORE PUSH1 0x20 ADD PUSH1 0x0 KECCAK256 PUSH1 0x1 ADD PUSH1 0x2 SWAP1 SLOAD SWAP1 PUSH2 0x100 EXP SWAP1 DIV PUSH20 0xFF AND SWAP2 POP PUSH2 0x18F JUMP JUMPDEST CALLER PUSH20 0xFF AND DUP3 PUSH20 0xFF AND EQ ISZERO PUSH2 0x365 JUMPI POP PUSH2 0x47E JUMP JUMPDEST PUSH1 0x1 DUP2 PUSH1 0x1 ADD PUSH1 0x0 PUSH2 0x100 EXP DUP2 SLOAD DUP2 PUSH1 0xFF MUL NOT AND SWAP1 DUP4 ISZERO ISZERO MUL OR SWAP1 SSTORE POP DUP2 DUP2 PUSH1 0x1 ADD PUSH1 0x2 PUSH2 0x100 EXP DUP2 SLOAD DUP2 PUSH20 0xFF MUL NOT AND SWAP1 DUP4 PUSH20 0xFF AND MUL OR SWAP1 SSTORE POP PUSH1 0x0 PUSH1 0x1 PUSH1 0x0 DUP5 PUSH20 0xFF AND PUSH20 0xFF AND DUP2 MSTORE PUSH1 0x20 ADD SWAP1 DUP2 MSTORE PUSH1 0x20 ADD PUSH1 0x0 KECCAK256 SWAP1 POP DUP1 PUSH1 0x1 ADD PUSH1 0x0 SWAP1 SLOAD SWAP1 PUSH2 0x100 EXP SWAP1 DIV PUSH1 0xFF AND ISZERO PUSH2 0x464 JUMPI DUP2 PUSH1 0x0 ADD SLOAD PUSH1 0x2 DUP3 PUSH1 0x1 ADD PUSH1 0x1 SWAP1 SLOAD SWAP1 PUSH2 0x100 EXP SWAP1 DIV PUSH1 0xFF AND PUSH1 0xFF AND DUP2 SLOAD DUP2 LT PUSH2 0x445 JUMPI INVALID JUMPDEST SWAP1 PUSH1 0x0 MSTORE PUSH1 0x20 PUSH1 0x0 KECCAK256 ADD PUSH1 0x0 ADD PUSH1 0x0 DUP3 DUP3 SLOAD ADD SWAP3 POP POP DUP2 SWAP1 SSTORE POP PUSH2 0x47B JUMP JUMPDEST DUP2 PUSH1 0x0 ADD SLOAD DUP2 PUSH1 0x0 ADD PUSH1 0x0 DUP3 DUP3 SLOAD ADD SWAP3 POP POP DUP2 SWAP1 SSTORE POP JUMPDEST POP POP JUMPDEST POP JUMP JUMPDEST PUSH1 0x0 DUP1 PUSH1 0x0 SWAP1 POP PUSH1 0x0 DUP1 SWAP1 POP JUMPDEST PUSH1 0x2 DUP1 SLOAD SWAP1 POP DUP2 PUSH1 0xFF AND LT ISZERO PUSH2 0x4F4 JUMPI DUP2 PUSH1 0x2 DUP3 PUSH1 0xFF AND DUP2 SLOAD DUP2 LT PUSH2 0x4AF JUMPI INVALID JUMPDEST SWAP1 PUSH1 0x0 MSTORE PUSH1 0x20 PUSH1 0x0 KECCAK256 ADD PUSH1 0x0 ADD SLOAD GT ISZERO PUSH2 0x4E7 JUMPI PUSH1 0x2 DUP2 PUSH1 0xFF AND DUP2 SLOAD DUP2 LT PUSH2 0x4D3 JUMPI INVALID JUMPDEST SWAP1 PUSH1 0x0 MSTORE PUSH1 0x20 PUSH1 0x0 KECCAK256 ADD PUSH1 0x0 ADD SLOAD SWAP2 POP DUP1 SWAP3 POP JUMPDEST DUP1 DUP1 PUSH1 0x1 ADD SWAP2 POP POP PUSH2 0x48E JUMP JUMPDEST POP POP SWAP1 JUMP JUMPDEST PUSH1 0x0 DUP1 SWAP1 SLOAD SWAP1 PUSH2 0x100 EXP SWAP1 DIV PUSH20 0xFF AND PUSH20 0xFF AND CALLER PUSH20 0xFF AND EQ ISZERO DUP1 PUSH2 0x5A1 JUMPI POP PUSH1 0x1 PUSH1 0x0 DUP3 PUSH20 0xFF AND PUSH20 0xFF AND DUP2 MSTORE PUSH1 0x20 ADD SWAP1 DUP2 MSTORE PUSH1 0x20 ADD PUSH1 0x0 KECCAK256 PUSH1 0x1 ADD PUSH1 0x0 SWAP1 SLOAD SWAP1 PUSH2 0x100 EXP SWAP1 DIV PUSH1 0xFF AND JUMPDEST ISZERO PUSH2 0x5AB JUMPI PUSH2 0x5F3 JUMP JUMPDEST PUSH1 0x1 DUP1 PUSH1 0x0 DUP4 PUSH20 0xFF AND PUSH20 0xFF AND DUP2 MSTORE PUSH1 0x20 ADD SWAP1 DUP2 MSTORE PUSH1 0x20 ADD PUSH1 0x0 KECCAK256 PUSH1 0x0 ADD DUP2 SWAP1 SSTORE POP JUMPDEST POP JUMP JUMPDEST PUSH1 0x0 PUSH1 0x1 PUSH1 0x0 CALLER PUSH20 0xFF AND PUSH20 0xFF AND DUP2 MSTORE PUSH1 0x20 ADD SWAP1 DUP2 MSTORE PUSH1 0x20 ADD PUSH1 0x0 KECCAK256 SWAP1 POP DUP1 PUSH1 0x1 ADD PUSH1 0x0 SWAP1 SLOAD SWAP1 PUSH2 0x100 EXP SWAP1 DIV PUSH1 0xFF AND DUP1 PUSH2 0x65E JUMPI POP PUSH1 0x2 DUP1 SLOAD SWAP1 POP DUP3 PUSH1 0xFF AND LT ISZERO JUMPDEST ISZERO PUSH2 0x669 JUMPI POP PUSH2 0x6D4 JUMP JUMPDEST PUSH1 0x1 DUP2 PUSH1 0x1 ADD PUSH1 0x0 PUSH2 0x100 EXP DUP2 SLOAD DUP2 PUSH1 0xFF MUL NOT AND SWAP1 DUP4 ISZERO ISZERO MUL OR SWAP1 SSTORE POP DUP2 DUP2 PUSH1 0x1 ADD PUSH1 0x1 PUSH2 0x100 EXP DUP2 SLOAD DUP2 PUSH1 0xFF MUL NOT AND SWAP1 DUP4 PUSH1 0xFF AND MUL OR SWAP1 SSTORE POP DUP1 PUSH1 0x0 ADD SLOAD PUSH1 0x2 DUP4 PUSH1 0xFF AND DUP2 SLOAD DUP2 LT PUSH2 0x6B8 JUMPI INVALID JUMPDEST SWAP1 PUSH1 0x0 MSTORE PUSH1 0x20 PUSH1 0x0 KECCAK256 ADD PUSH1 0x0 ADD PUSH1 0x0 DUP3 DUP3 SLOAD ADD SWAP3 POP POP DUP2 SWAP1 SSTORE POP POP JUMPDEST POP JUMP INVALID LOG2 PUSH6 0x627A7A723158 KECCAK256 GASLIMIT PUSH30 0x9494A1D1D64EBD9B931A6C692E671DC1F14D4A0C6600F7AA00FED360110 PUSH5 0x736F6C6343 STOP SDIV SIGNEXTEND STOP ORIGIN ",
			"sourceMap": "33:2130:0:-;;;;8:9:-1;5:2;;;30:1;27;20:12;5:2;33:2130:0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;872:577;;;;;;13:2:-1;8:3;5:11;2:2;;;29:1;26;19:12;2:2;872:577:0;;;;;;;;;;;;;;;;;;;:::i;:::-;;1801:360;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;655:164;;;;;;13:2:-1;8:3;5:11;2:2;;;29:1;26;19:12;2:2;655:164:0;;;;;;;;;;;;;;;;;;;:::i;:::-;;1509:286;;;;;;13:2:-1;8:3;5:11;2:2;;;29:1;26;19:12;2:2;1509:286:0;;;;;;;;;;;;;;;;;;;:::i;:::-;;872:577;919:20;942:6;:18;949:10;942:18;;;;;;;;;;;;;;;919:41;;995:6;:12;;;;;;;;;;;;991:25;;;1009:7;;;991:25;1025:115;1063:1;1032:33;;:6;:10;1039:2;1032:10;;;;;;;;;;;;;;;:19;;;;;;;;;;;;:33;;;;:70;;;;;1092:10;1069:33;;:6;:10;1076:2;1069:10;;;;;;;;;;;;;;;:19;;;;;;;;;;;;:33;;;;1032:70;1025:115;;;1121:6;:10;1128:2;1121:10;;;;;;;;;;;;;;;:19;;;;;;;;;;;;1116:24;;1025:115;;;1160:10;1154:16;;:2;:16;;;1150:29;;;1172:7;;;1150:29;1203:4;1188:6;:12;;;:19;;;;;;;;;;;;;;;;;;1235:2;1217:6;:15;;;:20;;;;;;;;;;;;;;;;;;1247:24;1274:6;:10;1281:2;1274:10;;;;;;;;;;;;;;;1247:37;;1298:10;:16;;;;;;;;;;;;1294:148;;;1368:6;:13;;;1328:9;1338:10;:15;;;;;;;;;;;;1328:26;;;;;;;;;;;;;;;;;:36;;;:53;;;;;;;;;;;1294:148;;;1429:6;:13;;;1408:10;:17;;;:34;;;;;;;;;;;1294:148;872:577;;;;:::o;1801:360::-;1849:22;1883:24;1910:1;1883:28;;1926:10;1939:1;1926:14;;1921:234;1949:9;:16;;;;1942:4;:23;;;1921:234;;;2019:16;1991:9;2001:4;1991:15;;;;;;;;;;;;;;;;;:25;;;:44;1987:168;;;2074:9;2084:4;2074:15;;;;;;;;;;;;;;;;;:25;;;2055:44;;2136:4;2117:23;;1987:168;1967:6;;;;;;;1921:234;;;;1801:360;;:::o;655:164::-;732:11;;;;;;;;;;;718:25;;:10;:25;;;;:50;;;;747:6;:15;754:7;747:15;;;;;;;;;;;;;;;:21;;;;;;;;;;;;718:50;714:63;;;770:7;;714:63;811:1;786:6;:15;793:7;786:15;;;;;;;;;;;;;;;:22;;:26;;;;655:164;;:::o;1509:286::-;1558:20;1581:6;:18;1588:10;1581:18;;;;;;;;;;;;;;;1558:41;;1613:6;:12;;;;;;;;;;;;:46;;;;1643:9;:16;;;;1629:10;:30;;;;1613:46;1609:59;;;1661:7;;;1609:59;1692:4;1677:6;:12;;;:19;;;;;;;;;;;;;;;;;;1720:10;1706:6;:11;;;:24;;;;;;;;;;;;;;;;;;1775:6;:13;;;1740:9;1750:10;1740:21;;;;;;;;;;;;;;;;;:31;;;:48;;;;;;;;;;;1509:286;;;:::o"
		},
		"gasEstimates": {
			"creation": {
				"codeDepositCost": "360800",
				"executionCost": "infinite",
				"totalCost": "infinite"
			},
			"external": {
				"delegate(address)": "infinite",
				"giveRightToVote(address)": "20997",
				"vote(uint8)": "62215",
				"winningProposal()": "infinite"
			}
		},
		"methodIdentifiers": {
			"delegate(address)": "5c19a95c",
			"giveRightToVote(address)": "9e7b8d61",
			"vote(uint8)": "b3f98adc",
			"winningProposal()": "609ff1bd"
		}
	},
	"abi": [
		{
			"constant": false,
			"inputs": [
				{
					"internalType": "address",
					"name": "to",
					"type": "address"
				}
],
			"name": "delegate",
			"outputs": [],
			"payable": false,
			"stateMutability": "nonpayable",
			"type": "function"
		},
		{
			"constant": true,
			"inputs": [],
			"name": "winningProposal",
			"outputs": [
				{
					"internalType": "uint8",
					"name": "_winningProposal",
					"type": "uint8"
				}
],
			"payable": false,
			"stateMutability": "view",
			"type": "function"
		},
		{
			"constant": false,
			"inputs": [
				{
					"internalType": "address",
					"name": "toVoter",
					"type": "address"
				}
],
			"name": "giveRightToVote",
			"outputs": [],
			"payable": false,
			"stateMutability": "nonpayable",
			"type": "function"
		},
		{
			"constant": false,
			"inputs": [
				{
					"internalType": "uint8",
					"name": "toProposal",
					"type": "uint8"
				}
],
			"name": "vote",
			"outputs": [],
			"payable": false,
			"stateMutability": "nonpayable",
			"type": "function"
		},
		{
			"inputs": [
				{
					"internalType": "uint8",
					"name": "_numProposals",
					"type": "uint8"
				}
],
			"payable": false,
			"stateMutability": "nonpayable",
			"type": "constructor"
		}
]

}

Creating and Deploying a Contract

There are 3 type of environments Remix can be plugged to:
Javascript VM, Injected provider, or Web3 provider. (for details see Running transactions [https://remix-ide.readthedocs.io/en/latest/run.html])

Both Web3 provider and Injected provider require the use of an
external tool.

The external tool for Web3 provider is an Ethereum node and for
Injected provider Metamask.

The JavaScript VM mode is convenient because each execution runs in
your browser and you don’t need any other software or Ethereum node to run it.

So, it is the easiest test environment - no setup required!

But keep in mind that reloading the browser when you are in the Javascript VM will restart Remix in an empty state.

For performance purposes (which is to say - for testing in an environment that is closest to the mainnet), it might also be better to use an external node.

Selecting the VM mode

Make sure the VM mode is selected. All accounts displayed in Accounts
should have 100 ether.

Sample contract

pragma solidity ^0.5.1;

contract testContract {

 uint value;

 constructor (uint _p) public {
 value = _p;
 }

 function setP(uint _n) payable public {
 value = _n;
 }

 function setNP(uint _n) public {
 value = _n;
 }

 function get () view public returns (uint) {
 return value;
 }
}

This contract is very basic. The goal is to quickly start to create and
to interact with a sample contract.

Deploying an instance

The Compile tab displays information related to the current contract
(note that there can be more than one) (see compile).

Moving on, in the Run tab select, JavaScript VM to specify that you
are going to deploy an instance of the contract in the JavaScript VM
state.

[image: _images/a-jvm.png]

The constructor of Ballot.sol needs a parameter (of type uint8).
Give any value and click on Deploy.

The transaction which deploys the instance of Ballot is created.

In a “normal” blockchain, it can take several seconds to execute. This
is the time for the transaction to be mined. However, because we are
using the JavaScript VM, our execution is immediate.

The terminal will inform you about the transaction. You can see details
there and start debugging.

The newly created instance is displayed in the run tab.

[image: _images/a-jvm-instance.png]

Interacting with an instance

This new instance contains 3 actions which corresponds to the 3
functions (setP, setPN, get). Clicking on SetP or SetPN will
create a new transaction.

Note that SetP is payable (red button) : it is possible to send
value (Ether) to the contract.

SetPN is not payable (orange button - depending on the theme) : it is not possible to send
value (Ether) to the contract.

Clicking on get will not execute a transaction (usually its a blue button - depending on the theme). It doesn’t execute a transaction because a get does not modify the state (variable
value) of this instance.

As get is view you can see the return value just below the
action.

[image: _images/a-jvm-calling-instance.png]

Debugging Transactions

(also see this page’s companion: the Debugger Tour)

There are two ways to start a debugging session, each one corresponds to a different use case.

	Use Case 1: for debugging a transaction made in Remix - click the Debug button in the transaction log in Remix’s Terminal.

	Use Case 2: for debugging a transaction where you have a txn hash from verified contract or where you have the txn hash and the compiled source code with the same compilation settings as the deployed contract.

Initiate Debugging from the transaction log in the Terminal

Let’s start with a basic contract (or replace the contract below with your own)

pragma solidity >=0.5.1 <0.6.0;
contract Donation {
 address owner;
 event fundMoved(address _to, uint _amount);
 modifier onlyowner { if (msg.sender == owner) _; }
 address[] _giver;
 uint[] _values;

 constructor() public {
 owner = msg.sender;
 }

 function donate() payable public {
 addGiver(msg.value);
 }

 function moveFund(address payable _to, uint _amount) onlyowner public {
 uint balance = address(this).balance;
 uint amount = _amount;
 if (_amount <= balance) {
 if (_to.send(balance)) {
 emit fundMoved(_to, _amount);
 } else {
 revert();
 }
 } else {
 revert();
 }
 }

 function addGiver(uint _amount) internal {
 _giver.push(msg.sender);
 _values.push(_amount);
 }
}

	Make a new file in Remix and copy the code above into it.

	Compile the code.

	Go to the Run & Deploy module.

For the purpose of this tutorial, we will run the JavaScript VM.

	Deploy the contract:

Click the Deploy button

[image: _images/a-debug1-deploy.png]

You’ll see the deployed instance (AKA the udapp).

[image: _images/a-debug2-udapp1a.png]

Then open it up (by clicking the caret).

[image: _images/a-debug3-udapp2.png]

We are going to call the Donate function and will send 2 Ethers.

To do this: in the value input box put in 2 and select Ether as the unit (DO NOT LEAVE THE DEFAULT unit as gwei or the change will be hard to detect).

[image: _images/a-debug4-value-loc.png]

Then click the Donate button.

This will send the Ether to the the function.

Because we are using the JavaScript VM, everything happens almost instantly. (If we had been using Injected Web 3, then we would have to need to approve the transaction, pay for gas and wait for the transaction to get mined.)

Remix displays information related to each transaction result in the terminal.

Check in the terminal where the transaction you just made is logged.

Click the debug button.

[image: _images/a-debug5-term-debug-but.png]

But before we get to the actual debugging tool, the next section shows how to start a debugging session directly from the Debugger.

Initiate Debugging from the Debugger

Click the bug icon in the icon panel to get to the debugger in the side panel.

If you don’t see the bug icon, go to the plugin manager and activate the debugger.

You can start a debug session by providing a transaction hash.

To find a transaction hash:

	Go to a transaction in the terminal.

	Click a line with a transaction - to exand the log.

	The transaction hash is there - copy it.

[image: _images/a-debug6-term-txn-hash.png]

Then click in the debugger paste the hash and click on the Start debugging button.

[image: _images/a-debug7-debugger.png]

Using the debugger

[image: _images/a-debug8-top3.png]

The debugger allows one to see detailed informations about the
transaction’s execution. It uses the editor to display the
location in the source code where the current execution is.

The navigation part contains a slider and buttons that can be used to
step through the transaction execution.

More explaination of what these buttons do.

	Step Into

	Step Over Into

11 panels give detailed information about the execution:

Instructions

The Instructions panel displays the bytecode of the current executing
contract- with the current step highlighted.

Important note: When this panel is hidden, the slider will have a
courser granularity and only stop at expression boundaries, even if they
are compiled into multiple EVM instructions. When the panel is
displayed, it will be possible to step over every instruction, even
those that refers to the same expression.

Solidity Locals

The Solidity Locals panel displays local variables associated with the
current context.

Solidity State

The Solidity State panel displays state variables of the current
executing contract.

Low level panels

These panels display low level informations about the execution:

	Stack

	Storages Changes

	Memory

	Call Data

	Call Stack

	Return Value (only if the current step is a RETURN opcode)

	Full Storages Changes (only at the end of the execution & it displays the all the storage changes)

Reverted Transaction

A transaction can be reverted (because of an out of gas exception, a Solidity revert statement or a low level exception).

It is important to be aware of the exception and to locate where the exception is in the source code.

Remix will warn you when the execution throws an exception.
The warning button will jump to the last opcode before the exception happened.

Breakpoints

The two last buttons from the navigation area are used to jump either
back to the previous breakpoint or forward to the next breakpoint.

Breakpoints can be added and removed by clicking on the line number in the Editor.

When using a debug session with breakpoints, the execution will jump to the first
encountered breakpoint.

Important note: If you add a breakpoint to a line that declares a
variable, it might be triggered twice: Once for initializing the
variable to zero and second time for assigning the actual value.

Here’s an example of this issue. If you are debugging the following contract:

pragma solidity >=0.5.1 <0.6.0;

contract ctr {
 function hid () public {
 uint p = 45;
 uint m;
 m = 89;
 uint l = 34;
 }
}

And breakpoints are set for the lines

uint p = 45;

m = 89;

uint l = 34;

then clicking on the Jump to the next breakpoint button will stop at the following
lines in the given order:

uint p = 45; (declaration of p)

uint l = 34; (declaration of l)

uint p = 45; (45 assigned to p)

m = 89; (89 assigned to m)

uint l = 34; (34 assigned to l)

Importing Source Files in Solidity

There are multiple techniques for importing files into Remix.

For a tutorial about importing files click here [https://github.com/ethereum/remix-workshops/tree/master/LoadingContent]. You can also find this tutorial in the Remix Workshops plugin.

For a detailed explanation of the import keyword see the
Solidity documentation [https://solidity.readthedocs.io/en/develop/layout-of-source-files.html?highlight=import#importing-other-source-files]

Here are a some of the main methods of importing a file:

Importing a file from the browser’s local storage

Files in Remix can be imported with the import key word with the path to the file. Use ./ for relative paths to increase portability.

pragma solidity >=0.4.22 <0.6.0;

import "./contracts/2_Owner.sol";

Importing a file from your computer’s filesystem

This method uses remixd - the remix daemon. Please go to the remixd tutorial for instructions about how to bridge the divide between the browser and your computers filesystem.

Importing from GitHub

It is possible to import files directly from GitHub. You should specify the release tag (where available), otherwise you will get the latest code in the master branch. For OpenZeppelin Contracts you should only use code published in an official release, the example below imports from OpenZeppelin Contracts v2.5.0.

pragma solidity >=0.4.22 <0.6.0;

import "https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v2.5.0/contracts/math/SafeMath.sol";

Importing from Swarm

Files can be imported using all URLs supported by swarm.
If you do not have a swarm node, then use swarm-gateways.net.

import 'bzz-raw://5766400e5d6d822f2029b827331b354c41e0b61f73440851dd0d06f603dd91e5';

Importing from IPFS

Files can be imported from IPFS.

import 'ipfs://Qmdyq9ZmWcaryd1mgGZ4PttRNctLGUSAMpPqufsk6uRMKh';

Importing from the console

You can also use a remix command remix.loadurl(‘<the_url>’)in the console. You should specify the release tag (where available), otherwise you will get the latest code in the master branch. For OpenZeppelin Contracts you should only use code published in an official release, the example below imports from OpenZeppelin Contracts v2.5.0.

remix.loadurl('https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v2.5.0/contracts/math/SafeMath.sol')

Notice that this will create a github folder in the file explorer. To load a file in the github folder, you would use a command like this:

import "github/OpenZeppelin/openzeppelin-contracts/contracts/math/SafeMath.sol";

Remix Commands

In the console, you can run the commands listed below. Once you start to type a command, there is auto completion. These commands are using the following libraries:

	ethers: The ethers.js [https://docs.ethers.io/ethers.js/html/getting-started.html] library is a compact and complete JavaScript library for Ethereum.

	remix: Ethereum IDE and tools for the web.

	web3: The web3.js [https://web3js.readthedocs.io/en/1.0/] library is a collection of modules which contain specific functionality for the ethereum ecosystem.

	swarmgw: This library can be used to upload/download files to Swarm via https://swarm-gateways.net/.

Here’s the list of commands

remix.debug(hash): Start debugging a transaction.

remix.debugHelp(): Display help message for debugging

remix.execute(filepath): Run the script specified by file path. If filepath is empty, script currently displayed in the editor is executed.

remix.exeCurrent(): Run the script currently displayed in the editor.

remix.getFile(path): Returns the content of the file located at the given path

remix.help(): Display this help message.

remix.loadgist(id): Load a gist in the file explorer.

remix.loadurl(url): Load the given url in the file explorer. The url can be of type github, swarm or ipfs.

remix.setFile(path, content): set the content of the file located at the given path

remix.setproviderurl(url): Change the current provider to Web3 provider and set the url endpoint.

swarmgw.get(url, cb): Download files from Swarm via https**://swarm-gateways.net/

swarmgw.put(content, cb): Upload files to Swarm via https**://swarm-gateways.net/

ethers.Contract: This API provides a graceful connection to a contract deployed on the blockchain, simplifying calling and querying its functions and handling all the binary protocol and conversion as necessarily.

ethers.HDNode: A Hierarchical Deterministic Wallet represents a large tree of private keys which can reliably be reproduced from an initial seed.

ethers.Interface: The Interface Object is a meta-class that accepts a Solidity (or compatible) Application Binary Interface (ABI) and populates functions to deal with encoding and decoding the parameters to pass in and results returned.

ethers.providers: A Provider abstracts a connection to the Ethereum blockchain, for issuing queries and sending state changing transactions.

ethers.SigningKey: The SigningKey interface provides an abstraction around the secp256k1 elliptic curve cryptography library.

ethers.utils: The utility functions exposed in both the ethers umbrella package and the ethers-utils.

ethers.utils.AbiCoder: Create a new ABI Coder object

ethers.utils.RLP: This encoding method is used internally for several aspects of Ethereum, such as encoding transactions and determining contract addresses.

ethers.Wallet: A wallet manages a private/public key pair which is used to cryptographically sign transactions and prove ownership on the Ethereum network.

ethers.version: Contains the version of the ethers container object.

web3.bzz: Bzz module for interacting with the swarm network.

web3.eth: Eth module for interacting with the Ethereum network.

web3.eth.accounts: The web3.eth.accounts contains functions to generate Ethereum accounts and sign transactions and data.

web3.eth.abi: The web3.eth.abi functions let you de- and encode parameters to ABI (Application Binary Interface) for function calls to the EVM (Ethereum Virtual Machine).

web3.eth.ens: The web3.eth.ens functions let you interacting with ENS.

web3.eth.Iban: The web3.eth.Iban function lets convert Ethereum addresses from and to IBAN and BBAN.

web3.eth.net: Net module for interacting with network properties.

web3.eth.personal: Personal module for interacting with the Ethereum accounts.

web3.eth.subscribe: The web3.eth.subscribe function lets you subscribe to specific events in the blockchain.

web3.givenProvider: When using web3.js in an Ethereum compatible browser, it will set with the current native provider by that browser. Will return the given provider by the (browser) environment, otherwise null.

web3.modules: Contains the version of the web3 container object.

web3.providers: Contains the current available providers.

web3.shh: Shh module for interacting with the whisper protocol

web3.utils: This package provides utility functions for Ethereum dapps and other **web3.js packages.

web3.version: Contains the version of the web3 container object.

web3.eth.clearSubscriptions();: Resets subscriptions.

web3.eth.Contract(jsonInterface[, address][, options]): The **web3.eth.Contract object makes it easy to interact with smart contracts on the ethereum blockchain.

web3.eth.accounts.create([entropy]);: The web3.eth.accounts contains functions to generate Ethereum accounts and sign transactions and data.

Running JS Scripts in Remix

Remix accepts async/await scripts to run web3.js [https://web3js.readthedocs.io/] or ethers.js [https://docs.ethers.io/] commands. The script needs to be wrapped in a self executing function.

Why run JavaScript Scripts in Remix?

	To mimic how the front-end of your dapp will use web3.js or ethers.js

	To quickly deploy and interact with a bunch of instances of a contract without going through the Remix GUI.

	To run some tests on a previous deployed contract.

Setup

	These scripts will need to access the contract’s ABI. The ABI is located in the contract’s metadata file. Make sure that this metadata file will be created by going to the Settings module and checking that the Generate contract metadata option is indeed checked.

	Compile a Solidity file - to generate the contract metadata.

	In the Deploy & Run plugin, choose the Environment.

	Async/await scripts work on in all of the Environments: the JavascriptVM, Injected Web3, and Web3 Provider.

	Write the script - see below for an example.

	To run the script - either (a) make the script the active file in the editor and run remix.exeCurrent() in the console OR (b) right click on the script in the files explorer to get the popup context menu (see the image below) and select the run option.

[image: _images/a-running-scripts-run.png]

An Example Script

The example below deploys a solidity contract named CustomERC20.sol. This example is using the web3.js library. Ethers.js could also be used.

For more information about this example, please see: running async/await scripts [https://medium.com/remix-ide/running-js-async-await-scripts-in-remix-ide-3115b5dd7687?source=friends_link&sk=04e650dfa65905fdab0ecd5b10513d41]

(async () => {
 try {
 console.log('deploy...')

 // Note that the script needs the ABI which is generated from the compilation artifact.
 const metadata = JSON.parse(await remix.call('fileManager', 'getFile', 'browser/artifacts/CustomERC20.json'))
 const accounts = await web3.eth.getAccounts()

 let contract = new web3.eth.Contract(metadata.abi)

 contract = contract.deploy({
 data: metadata.data.bytecode.object,
 arguments: ["Mask", "N95"]
 })

 newContractInstance = await contract.send({
 from: accounts[0],
 gas: 1500000,
 gasPrice: '30000000000'
 })
 console.log(newContractInstance.options.address)
 } catch (e) {
 console.log(e.message)
 }
})()

For more script examples, please see Frequently Asked Scripts.

Frequently Asked Scripts

Deploy with web3.js

(async () => {
 try {
 console.log('deploy...')

 // Note that the script needs the ABI which is generated from the compilation artifact.
 const metadata = JSON.parse(await remix.call('fileManager', 'getFile', 'browser/artifacts/CustomERC20.json'))
 const accounts = await web3.eth.getAccounts()

 let contract = new web3.eth.Contract(metadata.abi)

 contract = contract.deploy({
 data: metadata.data.bytecode.object,
 arguments: ["Mask", "N95"]
 })

 newContractInstance = await contract.send({
 from: accounts[0],
 gas: 1500000,
 gasPrice: '30000000000'
 })
 console.log(newContractInstance.options.address)
 } catch (e) {
 console.log(e.message)
 }
})()

Deploy with Ethers

(async function() {
 try {
 const metadata = JSON.parse(await remix.call('fileManager', 'getFile', 'browser/artifacts/CustomERC20.json'))
 // the variable web3Provider is a remix global variable object
 const signer = (new ethers.providers.Web3Provider(web3Provider)).getSigner()
 // Create an instance of a Contract Factory
 let factory = new ethers.ContractFactory(metadata.abi, metadata.data.bytecode.object, signer);
 // Notice we pass the constructor's parameters here
 let contract = await factory.deploy('Mask', 'N95');
 // The address the Contract WILL have once mined
 console.log(contract.address);
 // The transaction that was sent to the network to deploy the Contract
 console.log(contract.deployTransaction.hash);
 // The contract is NOT deployed yet; we must wait until it is mined
 await contract.deployed()
 // Done! The contract is deployed.
 console.log('contract deployed')
 } catch (e) {
 console.log(e.message)
 }
})();

Remixd: Access your Local Filesystem

To give the Remix-ide (the web app) access to a folder on your local computer, you need to use remixd.

remixd is both the name of an npm module and the name of a Remix-plugin. You need to install the plugin (from the plugin manager) and you need to install the remixd npm module.

NOTE: you need to install the remixd npm module & Run its command before activating the remixd plugin.

The code of remixd is
here [https://github.com/ethereum/remix-project/tree/master/libs/remixd] .

Remixd Installation

remixd can be globally installed using the following command:
npm install -g @remix-project/remixd

Or just install it in the directory of your choice by removing the -g flag:
npm install @remix-project/remixd

**NOTE: The npm address as well as the github repo of remixd have changed - in both cases moving under remix-project.

	In github remixd moved to https://github.com/ethereum/remix-project/tree/master/libs/remixd.

	In NPM the new address is remix-project/remixd.

Update to the latest Remixd

	uninstall the old one: npm uninstall -g remixd

	install the new: npm install -g @remix-project/remixd

remixd Command

From the terminal, the command remixd -s <absolute-path-to-the-shared-folder> --remix-ide <your-remix-ide-URL-instance> will start remixd and will share the given folder with remix-ide.

For example, to use remixd with Remix IDE at https://remix.ethereum.org, use this command:
remixd -s <absolute-path-to-the-shared-folder> --remix-ide https://remix.ethereum.org

Make sure that if you use https://remix.ethereum.org (secure http) in the remixd command (like in the example above), that you are also pointing your browser to https://remix.ethereum.org and not to http://remix.ethereum.org (plain old insecure http). Or if you want to use http in the browser use http in the remixd command.

The folder is shared using a websocket connection between Remix IDE
and remixd.

Be sure the user executing remixd has read/write permission on the
folder.

There is an option to run remixd in read-only mode, use --read-only flag.

Warning!

	remixd provides full read and write access to the given folder for any application that can access the TCP port 65520 on your local host.

	To minimize the risk, Remixd can only bridge between your filesystem and the Remix IDE URLS - including:

 http://remix-alpha.ethereum.org
 http://remix.ethereum.org
 https://remix-alpha.ethereum.org
 https://remix.ethereum.org
 package://a7df6d3c223593f3550b35e90d7b0b1f.mod
 package://6fd22d6fe5549ad4c4d8fd3ca0b7816b.mod
 https://ipfsgw.komputing.org

(the package:// urls are for remix desktop)

After the command is running, activate the remixd plugin.

From Remix IDE, in the Plugin Manager, activate the remixd plugin. This plugin is a websocket plugin and it has no UI other than a modal dialog box.

This modal will ask confirmation

Accepting this dialog will start a session.

If you do not have remixd running in the background - another modal will open up and it will say:

Cannot connect to the remixd daemon.
Please make sure you have the remixd running in the background.

Assuming you don’t get the 2nd modal, your connection to the remixd daemon is successful. The shared folder will be available in the file explorer.

When you click the activation of remixd is successful - there will NOT be an icon that loads in the icon panel.

Click the File Explorers icon and in the swap panel you should now see the folder for localhost.

Click on the localhost connection icon:

[image: _images/a-remixd-success.png]

FAQ

Solidity compiler

Q: Error: compiler might be in a non-sane state

error: "Uncaught JavaScript exception: RangeError: Maximum call stack size exceeded.
The compiler might be in a non-sane state, please be careful and do not use further compilation data to deploy to mainnet.
It is heavily recommended to use another browser not affected by this issue (Firefox is known to not be affected)."

A: Old versions of solidity compiler had this problem with chrome.
Please change the compiler version in Solidity Plugin to the newer one or use another browser.

Q: I’m getting an issue with Maximum call stack exceed and various other errors, can’t compile.

A: Try a different browser or a newer solidity compiler version.

Q: How to verify a contract that imports other contracts?

A: The verification tool does not recursively go through the import statments in a contract. So can only verify a ‘flattened’ contract.

There is a plugin called Flattener which will stuff all the original code and the imported code into a single file.

Deploy & Run

Q: I am using an Infura endpoint in my app, but when I try to deploy against that endpoint in remix IDE selecting “web3 provider” and putting my endpoint in, it’s telling me that it can’t connect

A: If the endpoint you are using is http, it won’t work.

Q: Where is deploy button?

A: Its in the Deploy & Run module. If you haven’t activated that module, you should do that by clicking Deploy & Run module in the Plugin Manager.
You could also activate everything you need to work with solidity on the landing page (click the remix logo at the top left for the screen) and click the “Solidity” button in the environment section.

Q: How to pass a tuple to a public function in Remix?

A: Pass it as an array [].

Q: How to input a struct as input to a parameter of a function in the Deploy & Run module?

A: For inputting a struct, just like a tuple, pass it in as an array []. Also you need to put in the line:

pragma experimental ABIEncoderV2; at the top of the solidity file.

For example, here’s a solidity file with a struct is an input parameter.

pragma solidity >=0.4.22 <0.6.0;
pragma experimental ABIEncoderV2;

contract daPeeps {
 struct Peep {uint a; uint b;} // declaration of Peep type
 Peep peep; //declaration of an object of Peep type

 constructor () public
 {
 peep.a = 0; // definition/initialisation of object
 peep.b = 0; //
 }

 function initPeepToPeep(Peep memory i) public payable {
 peep.a = i.a;
 peep.b = i.b;
 }
 function setPeep(uint a, uint b) public payable {
 peep.a = a;
 peep.b = b;
 }

 function getPeep() public view returns(Peep memory)
 {
 return peep;
 }
}

The input of initPeepToPeeps takes a struct. If you input
[1,2] the transaction will go through.

General

Q: Where do plugin developers go with their questions?

A: The Gitter Remix plugin developers room https://gitter.im/ethereum/remix-dev-plugin

Analytics

Q: What information does Remix save when Matomo Analytics is enabled?

A: We want to know:

	Which plugins get activated & deactivated

	If users check the box to publish a contract’s metadata when deploying

	Which themes are used/used most/not used at all

	The usage of the links to documentation

	On the homepage, which file importing buttons are used

Q: Is it opt-in or opt-out?

A: We use Matomo as an opt-in analytics platform.

Q: Where is the info stored? Is the info shared with 3rd parties?

A: All data collected through Matomo is stored on our own server. No data is given to third parties.

We respect your privacy and do not collect nor store any personally identifiable information (PII).

Q: What does Remix do with this info?

A: Our goal is to understand how many users we have, what plugins people are using, what is not getting used, what is not being used to its full potential.

With this understanding, we can make adjustments to the UI as well as providing more tips and documentation. It’s a way of getting constant anonymous feedback from our users.

Q: After I agree opt-in, can I change my mind?

A: You can turn off or on Matomo in the Settings panel. There are no consequences for not opting-in or opting-out.

Remix URLs & Links with Parameters

	An online version is available at https://remix.ethereum.org. This version is stable and is updated at almost every release.

	An alpha online version is available at https://remix-alpha.ethereum.org. This is not a stable version.

	Github repo: https://github.com/ethereum/remix-project. The README contains instructions for running Remix-IDE locally.

	Github release: https://github.com/ethereum/remix-project/releases.

Embedding & Linking to Remix

Remix-IDE’s urls have parameters -so it is possible to specify:

	A list of plugins to be activated - as well as which plugin you want to be loaded in the side panel (so it gains the “focus”).

	A Command to be sent to a plugin - once the plugin loads.

	The theme (Dark or Light).

	The panels that should be minimized.

	The version of the Solidity compiler & the optimize option enabled or disabled.

Activating a list of plugins

The following example contains the url parameter activate followed by a list of plugins. The last plugin will gain the focus.

When you use the activate list, all other plugins that a user had loaded will be deactivated. This does not apply to the file explorer, the plugin manager, and the settings modules because these are never deactivated.

https://remix.ethereum.org/?#activate=solidity,solidityUnitTesting,udapp,defiexplorer

Deactiving a list of plugins

https://remix.ethereum.org/?#deactivate=udapp

Note: a plugin is called by its name in its profile. To check for a plugin’s profile name - for plugins built by external teams, please go to https://github.com/ethereum/remix-plugins-directory/tree/master/plugins

Minimizing Remix panels

The following URL will close everything except the main panel & the icon panel (the side and terminal are minimized).

https://remix.ethereum.org/?#embed=true

To minimize just the side panel, use this URL:

https://remix.ethereum.org/?#minimizesidepanel=true

To minimize just the terminal, use this URL:

https://remix.ethereum.org/?#minimizeterminal=true

Specifying a theme

To link to Remix with a theme specified use this url:

 https://remix.ethereum.org/?#theme=Dark

A URL example combining multiple parameters

To link to Remix with the a list of plugins activated and with:

	the Learneth gaining the side panel’s focus (because it is the last in the list)

	the Light theme loaded

	the terminal minimized

	optimize off

use this url:

 https://remix.ethereum.org/?#activate=solidity,solidityUnitTesting,LearnEth&theme=Light&minimizeterminal=true&optimize=false&evmVersion=null&version=soljson-v0.6.6+commit.6c089d02.js

Passing commands to a plugin via a url param

It is also possible to pass a command to a plugin’s api with a url parameter.

The URL parameter to issue a command is call. Following the call is a // (double slash) separated list of arguements.

call=plugin_name//function//parameter1//paremeter2

Here are some examples:

Load one of the default Remix files:

https://remix.ethereum.org/?#activate=udapp,solidity&call=fileManager//open//3_Ballot.sol

Load a GIST

https://remix.ethereum.org/?gist=0fe90e825327ef313c88aedfe66ec142

Load a GIST and have it be visible in the Editor:

https://remix.ethereum.org/?#activate=solidity,udapp&gist=0fe90e825327ef313c88aedfe66ec142&call=fileManager//open//browser/gists/0fe90e825327ef313c88aedfe66ec142/gridMix4.sol

Load a GIST, have it be visible in the Editor & load a list of plugins:

https://remix.ethereum.org/?#activate=solidity,udapp&gist=0fe90e825327ef313c88aedfe66ec142&call=fileManager//open//browser/gists/0fe90e825327ef313c88aedfe66ec142/gridMix4.sol

Load a specific tutorial in the LearnEth plugin:

https://remix.ethereum.org/?#activate=udapp,solidity,LearnEth&call=LearnEth//startTutorial//ethereum/remix-workshops//master//proxycontract

Load a specific version of the Solidity compiler:

https://remix.ethereum.org/?#version=soljson-v0.6.6+commit.6c089d02

Note: you need to specify both the Solidity version and the commit.

Load a custom Solidity compiler:

https://remix.ethereum.org/#version=https://solidity-blog.s3.eu-central-1.amazonaws.com/data/08preview/soljson.js

Remix Github Tutorials

There are a series of tutorials in our github repo remix-workshops [https://github.com/ethereum/remix-workshops].

We are in the process of upgrading these tutorials to use the new Remix layout.

In this repo there tutorials for all levels.

There are tutorials for specific remix functionalities like:

Deploying

Multiple ways of loading files in Remix
Deploying with libraries
Deploying a proxy contract

Testing

Testing Examples
Continuous integration

Remix Plugin Development

Developing a plugin for Remix and deploying it to swarm

Other

EtherAtom (walkthrough slides + screencast)
Debugging transactions with Remix IDE
Recording and replaying transactions
Using a Pipeline plugin for developing Solidity contracts with demo video
Running scripts in the Remix terminal (batch deployment) (proxy deployment)

Additional external workshops

Using Oraclize plugin in Remix

Code Contribution Guide

Remix is an open source tool and we encourage everyone to help us improve it.
Please opening issues, give feedback or contribute by a pulling request
to our codebase.

The Remix application is built with JavaScript and it doesn’t use any frameworks. We rely on a selected set of npm modules, like yo-yo, csjs-inject and among others. Check out the package.json files in the Remix submodules to learn more about the stack.

To learn more, please visit our GitHub page [https://github.com/ethereum/remix-project].

Community Support

We know that blockchain ecosystem is very new and that lots of information is scattered around the web.
That is why we created a community support channel where we and other users try to answer your questions if
you get stuck using Remix. Please, join the community [https://gitter.im/ethereum/remix] and ask for help.

For anyone who is interested in developing a custom plugin for Remix or who wants to contribute to the codebase,
we opened a contributors’ channel [https://gitter.im/ethereum/remix-dev] especially for developers working on Remix tools.

We would kindly ask you to respect the space and to use it for
getting help with your work and the developers’ channel for discussions related to working on Remix codebase. If you have
ideas for collaborations or you want to promote your project, try to find some more appropriate channels to do so. Or you can contact
the main contributors directly on Gitter or Twitter.

Index

 _images/a-Runtab-deploy-atAddress.png
DEPLOY AND RUN TRANSACTIONS

Environment | JavaScript VM

Account @ | Oxca3...a733c (100 ether)

Gas limit 3000000

Value 0

@ wei

«

<«

<«

.

Ballot

<

Deploy

or

At Address

uint8 _numProposals

Load contract from Address

.

_images/a-debug-call-data.png
v Callpata [©

o 0xa69dae10000000000000000000000004b2
0993bca81177ec7e8157 1cecae8age22c02db

_images/a-debug-func-stack.png
~ Function Stack ([0
changeOwner(newOwner)

_images/a-debug-nav.png
Slider
Step back Step into
Step over back Step over forward
L s]

Jump to prev breakpoint y
Jump out

Jump to next breakpoint

_images/a-debug-call-stack.png
~ CallStack (@

o; 0xd9145CCES2D386{254917e481eB44e9943F3
9138

_images/a-debug-full-store-change.png
~ Full Storages Changes ([0

0xd9145CCE52D3861254917e481eB44e994 Object
~3F39138:

0x290decd9548b62a8d603452988386fc Object
 84ba6bc95484008f6362193160ef3e563:

key: 0x000000000000000000000000000000
00000000000000000000000000000000
00

value: 0x5b38da6a701c568545dcfcb03fcb875f5
6beddca

_images/a-debug-sol-locals.png
~ Solidity Locals ([0

newOwner:
0x4B20993BCA481177EC7ESF571CECAEBAIE22C02DB
address.

_images/a-debug-sol-state.png
~ Solidity State ([0

owner:
0x5B38DA6A701C568545DCFCBO3FCBB75F56BEDDCA
address.

_images/a-debug-opcodes1.png
077 MuL
07808
079 SwAP1

S0
S04 buPr

_images/a-debug-return.png
v ReturnValue (@
0: Object

_images/a-debug-storage.png
Storage [Completely Loaded] (@

0x290decd9548b62a8d60345a988386fc8 Object
v 4ba6bco5484008636293160ef3e563:

key: 0x00000000000000000000000000000000
00000000000000000000000000000000

value: 0x5b38¢a6a701c568545dcfcb03fcb875f56D
eddcd

_images/a-debug-use-gen-sources.png
DEBUGGER

DEBUGGER CONFIGURATION

/) Use generated sources (from Solidity
0.7.2)

0x50b112e6caded1a35dbs6bce0ababa.

a

@ @Home

1
12
13
14
15
16
17
18
19
20
21
22
23
2
25
2
27
28

1

tisol #

yyul
let value := calldataload(headStart)

if iszeroCeq(value, and(value, shl(224, OxFFFFFFFF)))) { rev
valued := value

function abi_decode_tuple_t_bytes_calldata_ptr(headStart, dataEn

{

if slt(sub(dataknd, headStart), 32) { revert(valuel, valuel)
let offset := calldataload(headStart)

Tet _1 := OxFFFFFFFFFFFFFFFF

if gt(offset, 1) { revert(valuel, valuel) }

let 2 := addCheadstart, offset)

if iszero(slt(add(_2, Ox1f), dataEnd)) { revert(valuel, valu
let length := calldataload(2)

if gtClength, _1) { revert(valuel, valuel) }

1f gt(add(add(2, length), 32), dataknd) { revert(valuel, val
valued := add(2, 32)

Tength

_images/a-debug-step-detail.png
Step details [0
vm trace step: 86

execution step: 86
add memory:

gas: 3

remaining gas: 2976218

loaded 0xd9145CCE52D386254917e481eB44e99
address: 43F39138

_images/a-debug3-udapp2.png
Dx

_images/a-debug4-value-loc.png
'DEPLOY AND RUN TRANSACTIONS &

Envronment | Javaseript VM. i

Account © | Oxcad_a733¢ (99.9999999999976027 14 ethe t OF

Gastmit 500000

==

[o - .

_images/a-debug1-deploy.png
DEPLOY AND RUN TRANSACTIONS &

Environment JavaScript VM

Account © | Oxca3..a733¢ (99.999999999997865927 ethe + O
Gaslimit | 3000000

Vave

[oomon

Transactions recorded: @

_images/a-debug2-udapp1a.png
==

_images/a-debug7-debugger.png
4 DeeuooRR -]

Oxbe2r6

2 T

430970dedéch846cS0:

79

_images/a-debug5-term-debug-but.png
B o0 tomomer a

_images/a-debug6-term-txn-hash.png
]
Amanion et s

o

e e —
o ooy

et et wo

R oo

o uoo

_images/a-debugger-overview.png

_images/a-debug8-top3.png
DEBUGGER B

Ox6ed9fd044ddc4017d656b0a196fffdbfbaBead1.

Stop debu

ng

002PUSH1 40 Insrucions Pl
004 MSTORE /_ WIEWM Bytecode
005 PUSH1 04
007 CALLDATASIZE
o08LT
009 PUSH2 0046
012)UMPI
mtrace step: 0 Basic Info Panel
executionstep:0 /_

add memory:
gas:3
remaining gas: 2978728

loaded address: 0x692a70d2e424a56d2c6c272297d

1286395877b3a / Slder to step through transaction execution

44— Buttonsto step through transaction execution

b 1 1 [d

_images/a-debugger-memory.png
Memory (&

ox0:
oxto:
oxz0:
oxso:
oxao:
oxs0:
oxs0:
ou0:
oxg0:
oxs0:
oxa0:
Oxbo:

oxeo:

oxdo:

00000000000000000000000000000000 2722222222222222

00000000000000000000000000000001 7222722722722727

00000000000000000000000000000000

00000000000000000000000000000160 727222227

00000000000000000000000000000000

00000000000000000000000000000000 7772722222727272
00000000000000000000000000000000 2772722227227222
00000000000000000000000000000004 2222222222222222
66726564000000000000000000000000 fred?:
00000000000000000000000000000000 2772722222227222
00000000000000000000000000000000

00000000000000000000000000000020 7
00000000000000000000000000000000 2772722222227222
00000000000000000000000000000001 2222222222222222

4865606061205761726642100000000 Hello World?272?
00000000000000000000000000000000 7272722222227222
00000000000000000000000000000000

00000000000000000000000000000001 27227

486566¢61205761726642100000000 Hello World:

00000000000000000000000000000000

